

D. TUTORIELS ET EXEMPLES

INTRO	DUCTIC	DN	3
PARTI	E 1 : TU	TORIELS	4
D.1	Tutoriel	1 : Mur cloué	5
2	D.1.1	Etape 1 : propriétés du projet	6
	D.1.2	Etape 2 : définition de la géométrie	9
	D.1.3	Etape 3 : définition des caractéristiques de sol	
	D.1.4	Etape 4 : définition des surcharges	15
	D.1.5	Etape 5 : définition des clous	17
	D.1.6	Etape 6 : définition des niveaux de terrassement intermédiaires	20
	D.1.7	Etape 7 : définition de la phase 1	21
	D.1.8	Etape 8 : définition de la phase 2	30
	D.1.9	Etape 9 : définition de la phase 3	32
	D.1.10	Etape 10 : définition de la phase 4 (phase définitive)	34
D.2	Tutoriel	2 : Stabilité de pente sous nappe	
	D.2.1	Importation des données du fichier Plaxis 2D	
	D.2.2	Variante : définition du modèle dans Talren v5	
	D.2.3	Définition de la 1 ^{ere} phase (nappe au repos)	42
	D.2.4	Définition de la 2 ^{eme} phase (vidange rapide)	44
	D.2.5	Définition de la 3 ^{eme} phase (vidange lente)	48
	D.2.6	Synthèse des résultats obtenus	49
D.3	Reprise	des 2 premiers tutoriels avec la méthode du calcul à la rupture	50
	D.3.1	Tutoriel 1 : Mur cloué (calcul à la rupture)	50
	D.3.2	Tutoriel 2 : Stabilité de pente sous nappe (calcul à la rupture)	52
	D.3.3	Remarques sur la comparaison calcul à la rupture / calcul Bishop	55
D.4	Tutoriel	3 : Stabilité d'une pente naturelle avec des pieux - Surfaces de	
	rupture	polygonales (non circulaires)	56
	D.4.1	Définition des propriétés du projet	56
	D.4.2	Définition de la géométrie du projet	58
	D.4.3	Définition des caractéristiques de sol	59
	D.4.4	Définition des renforcements	60
	D.4.5	Définition de la phase 1	61
	D.4.6	Définition de la phase 2	67
D.5	Tutoriel	4 : Estimation des diagrammes de poussée/butée limite par la	
	méthod	e du calcul à la rupture	68
	D.5.1	Présentation de l'étude et du principe de calcul	68
	D.5.2	Définition des propriétés du projet	69
	D.5.3	Définition de la géométrie	70
	D.5.4	Définition des caractéristiques du sol	70
	D.5.5	Etape 1 : recherche de la poussée limite (p _a)	71
	D.5.6	Etape 2 : Recherche de la butée limite (pb)	78
D.6	Tutoriel	5 : Etude d'un gabion cellulaire par la méthode du calcul à la rupture	
	(spirales	s à concavité vers le haut ou vers le bas)	86
	D.6.1	Présentation de l'étude	
	D.6.2	Définition de la géométrie	
	D.6.3	Définition des surcharges	
	D.6.4	Définition des caractéristiques de sol	90
	D.6.5	Définition de la phase 1	91

PARTI	E 2 : EXEMPLES D'APPLICATION DE TALREN	96
D.7	Exemple 1 : reprise en sous-œuvre d'un bâtiment	97
D.8	Exemple 2 : stabilité d'un talus provisoire	98
D.9	Exemple 3 : stabilité d'un soutènement par géogrilles	99
D.10	Exemple 4 : réfection d'une chaussée après glissement	101
D.11	Exemple 5 : soutènement (microberlinoise)	102
D.12	Exemple 6 : stabilisation superficielle d'un talus	103
D.13	Exemple 7 : géotextile à la base d'un remblai sur sol mou	104
D.14	Exemple 8 : anisotropie de cohésion	105
D.15	Exemple 9 : courbe intrinsèque non linéaire	106
D.16	Exemple 10 : fouille butonnée en zone sensible	107
D.17	Exemple 11 : barrage avec approche de l'écoulement	108
D.18	Exemple 12 : stabilité d'une culée en terre armée	110
D.19	Exemple 13 : calage des caractéristiques sur une surface de rupture	111
D.20	Exemple 14 : paroi moulée avec 2 nappes d'eau	112
D.21	Exemple 15 : soutènement cloué	114
D.22	Exemple 16 : stabilité d'un quai en cylindres de béton	116
D.23	Exemple 17 : stabilisation d'un glissement par pieux	118
D.24	Exemple 18 : stabilisation d'un remblai sur sol mou par micropieux	120
D.25	Exemple 19 : soutènement sur pente	121
D.26	Exemple 20 : ouvrage tiranté	122
D.27	Exemple 21 : remblai sur sol de cohésion variable avec la profondeur	123
D.28	Exemple 22 : stabilisation par pieux avec cisaillement variable	124
D.29	Exemple 23 : coefficient ru	126
D.30	Exemple 24 : construction d'un mur d'autoroute	127

INTRODUCTION

Cette partie du manuel a pour vocation de présenter plusieurs tutoriels et exemples d'application de Talren pour des projets que l'on rencontre habituellement.

Les **tutoriels** sont issus de cas d'études. Le but étant de montrer la manière par laquelle il convient de les aborder sur Talren, nous préciserons toutes les manipulations à réaliser ainsi que les réflexions à mener afin de garder un œil critique lors de l'analyse des résultats obtenus.

Les autres **exemples d'application** présentés ensuite permettent de montrer et d'apprécier le champ d'application de Talren et en particulier des méthodes de calcul qui sont proposées.

PARTIE 1 : TUTORIELS

Ce chapitre présente 5 tutoriels différents portant sur des cas d'étude courants :

- Tutoriel 1 : mur cloué
- **Tutoriel 2** : stabilité de pente sous nappe
- **Tutoriel 3** : stabilité d'une pente naturelle avec des pieux
- **Tutoriel 4** : estimation des diagrammes de poussé/butée limites d'un sol
- Tutoriel 5 : étude d'un gabion cellulaire

Le 1^{er} tutoriel explicite toutes les manipulations de l'interface nécessaires pour définir le projet. Dans l'optique d'alléger l'ensemble des explications, les autres tutoriels ne seront pas aussi explicites que le 1^{er} tutoriel, mais ils fournissent bien-sûr toutes les indications nécessaires.

Les tutoriels 1 et 2 font intervenir la méthode de Bishop (méthode des tranches). Une approche différente est présentée ensuite en abordant les mêmes tutoriels avec la méthode de calcul à la rupture (plus exhaustive).

Le tutoriel 3 est abordé avec la méthode de calcul des perturbations.

Les tutoriels 4 et 5 sont abordés exclusivement avec la méthode de calcul à la rupture.

D.1 Tutoriel 1 : Mur cloué

L'objet de ce premier tutoriel est de détailler les manipulations permettant la vérification de la stabilité d'un projet de mur cloué illustré sur la figure suivante. La géométrie du projet est définie sur la Figure 2

D.1.1 Etape 1 : propriétés du projet

- Lancer Talren en utilisant le menu « Démarrer » de Windows ou en cliquant sur l'icône située sur le bureau Windows® ;
- Sélectionner le menu « Fichier » puis l'option « Nouveau projet … » ou cliquer sur l'icône la barre de boutons des « Raccourcis ».

ţ.				_			 		
Fichier				Racco	ourcis -	~			
Nouvea	Ctrl+N	ou			-		9		

- Sélectionner un répertoire d'enregistrement du projet et donner un nom au fichier du projet (d'extension .t5p).
- L'interface suivante est alors affichée. Elle est bien sûr encore "vide" puisqu'aucune donnée n'a été saisie.

Figure 3. Création d'un nouveau projet – fenêtre principale

- Compléter la partie **Propriétés du projet** dans le volet à droite de la fenêtre principale avec les informations demandées (cf. Figure 4) :
 - <u>Concernant X_{min} et X_{max}</u> : il ne s'agit pas que d'une configuration de l'affichage graphique. X_{min} et X_{max} définissent la largeur sur laquelle le projet doit être impérativement défini. L'enveloppe sera automatiquement reconnue entre X_{min} et X_{max} : si les segments du projet n'atteignent pas ces bornes, l'enveloppe ne sera pas reconnue et le calcul sera impossible.
 - <u>Système d'unités</u> : il sera valable pour tout le projet.

Arborescence du projet Projet "Tutoriel Talren" (1) E Géométrie Caractéristiques des sols G Surcharges Renforcements Ajouter une nouvelle phase		
Propriétés du projet		
Numéro d'affaire	1987DEV	
Titre du calcul	Tutoriel Talren	
Lieu		
Commentaires	Exemple 1 : exemple type de mur cloué	
Verie (er)	440.000	
Xmin (m)	-110,000	
Xmax (m)	30,000	
Svetàma d'unitáe	kN kDa kN/m3	
v (h)/m ³	10.0	
Y _W (KWIII)	10,0	
Méthode de calcul*	Bishon	
	- Charley	
Jeu de coef. de sécurité*	Clouterre fondamental/courant	
* par défaut	Définir 🛬	
Fond de plan	Définir 😒	
Géométrie	Définir 🛬	
Caractéristiques des sols	Définir 🔄	
Surcharges	Définir 🛬	~

Figure 4. Description générale

 <u>Méthode de calcul et pondérations par défaut</u> : il s'agit des choix qui seront ensuite retenus comme valeurs par défaut lors de la définition des situations (mais toujours modifiables pour chaque situation individuellement).

Par exemple, si vous définissez un projet avec plusieurs phases et plusieurs situations, et que vous souhaitez effectuer tous les calculs avec la même méthode de calcul et le même jeu de pondérations, définissez ces paramètres comme valeurs par défaut dans les **Propriétés du projet** : ils seront ensuite repris par défaut pour toutes les situations définies. Sinon, il conviendra de redéfinir ces paramètres pour chaque situation.

<u>Pondérations par défaut (cf. Figure 5)</u>: cliquer sur le bouton <u>Définir</u> puis cliquer sur le bouton <u>Base de données (12)</u> (1) en bas du volet de propriétés. Sélectionner le jeu de pondérations souhaité dans la liste déroulante (2) et cliquer sur le bouton <u>monter dans le projet</u> (3). Compléter/modifier si nécessaire le jeu de pondérations choisi (4). Puis valider par le bouton <u>Retour</u> (5).

Nota important : dans le cas de ce tutoriel, les coefficients de sécurité partiels relatifs aux tirants, bandes et butons ont été complétés pour pouvoir valider l'écran, mais ne seront pas utilisés lors du calcul (seuls ceux des clous seront utilisés). Les valeurs définies ne constituent donc en aucun cas un exemple ou une référence à réutiliser : il faut définir pour chaque étude des valeurs issues des normes ou recommandations adaptées au projet traité.

Propriétés du pr	rojet	
🔄 Retour	Jeux de coefficients de sécurité	
🥞 Jeux de	coefficients de sécurité du projet	í
	<veuillez coefficients="" créer="" de="" jeu="" sécurité="" un=""></veuillez>	
	1	
🥫 Base de	e données (12)	
Eurocode - For	ndamental - Ouvrage courant	

2										
	\$) Importer dans le projet								
Nom	Unitaire									
min	1,000	Γ _{qsl,tirant,ab}	1,000							
s1	1,000	Γ _{qsl,tirant,es}	1,000							
r _{s1}	1,000	Γ _{qsl,bande}	1,000							
Γφ	1,000	Г _{рі}	1,000							
Г _{о'}	1,000	Γ _{a,clou}	1,000							
r _{cu}	1,000	Γ _{a,tirant}	1,000							
Γ <u>α</u>	1,000	Γ _{a,bande}	1,000							
qsl,clou,ab	1,000	Γ _{buton}	1,000							
Eurocode - Fond	lamental - Ouvrag	e sensible								
Eurocode - Sism Unitaire	ique									
Traditionnel/Sit. p	provisoire									
Traditionne/Sit. définitive										

opriétés du pro	jet Jeux de coefficients de	e sécurité			5	- Propriétés du pro	et leux de coefficients	de sécurité		
🥞 Jeux de i	coefficients de sécurité du	u projet (1)		+ 1		🥞 Jeux de c	oefficients de sécurité	du projet (1)	+	1
Clouterre fonda	amental/courant			~		Clouterre fonda	mental/courant			
]					
om	Clouterre fondamental/	/courant				Nom	Clouterre fondament	al/courant		
nin	1,000	F _{qsl,tirant,ab}				Г _{min}	1,000	Γ _{qsl,tirant,ab}	1,000	
	1,050	Γ _{gsl,tirant,es}				Γ _{s1}	1,050	Γ _{qsl,tirant,es}	1,000	
1	0,950	Γ _{qsl,bande}				Γ _{s1}	0,950	Γ _{qsl,bande}	1,000	
	1,200	Г _{рі}	1,900		4	Γ _φ	1,200	Г _{рі}	1,900	
	1,500	Γ _{a,clou}	1,150		-	Г _{с'}	1,500	Γ _{a,clou}	1,150	
	1,300	Г _{а,tirant}				Г _{ои}	1,300	Γ _{a,tirant}	1,000	
	1,330	Γ _{a,bande}				٢۵	1,330	Γ _{a,bande}	1,000	
sl,clou,ab	1,800	Г _{buton}				Γ _{qsl,olou,ab}	1,800	Г _{buton}	1,000	
sl,clou,es	1,400	Γ _{s3}	1,125			F _{gsl,clou,es}	1,400	Γ _{s3}	1,125	

Figure 5. Choix d'un jeu de coefficients partiels de pondération/sécurité

D.1.2 Etape 2 : définition de la géométrie

Cliquer sur l'item Géométrie 🚾 du volet de l'arborescence (en haut à droite).

Les coordonnées des points définissant la géométrie du talus ainsi que les limites de couches sont définies sur la Figure 2.

Important : il faut également définir à ce stade tous les niveaux de terrassement qui seront utilisés lors de la définition du phasage.

Pour représenter cette géométrie, vous avez plusieurs possibilités :

- 1. Dessin à la souris ;
- 2. Saisie des coordonnées directement sur l'écran principal ;
- Utilisation du volet des propriétés.

Nous allons utiliser dans cet exemple successivement les 3 méthodes possibles.

- 1. Dessin à la souris :
 - Tout d'abord, pour faciliter le dessin à la souris, il est recommandé d'activer l'affichage d'une grille et l'accrochage à cette grille. Pour cela, cliquer sur le menu **Projet** | puis sur l'option **Paramètres avancés...** | Vous pourrez alors paramétrer l'espacement des points de la grille : choisir ici une Taille de grille égale à 0,25 m par exemple et laisser cochée la case Afficher la grille puis fermer la fenêtre en cliquant sur le bouton Fermer . Les incréments de 0,25 m seront utilisés lors des clics sur le dessin pour définir la position des points. Plus la grille est fine, plus le tracé sera précis.
 - Pour dessiner la géométrie à la souris, cliquer sur le bouton Créer des points et des segments \Upsilon de la barre des Outils. Cliquer ensuite sur le premier point de la géométrie à représenter, puis déplacer la souris et cliquer au 2^{ème} point : un segment entre les 2 points est créé. Si vous voulez définir des points sans les relier par des segments, appuyez tout simplement sur la touche Echap entre 2 clics. L'objectif est d'obtenir le même dessin que celui de la Figure 6.

Astuces de dessin :

- Pour supprimer un point : cliquer dessus, puis appuyer sur la touche « Suppr » du clavier. La suppression fonctionne de façon analogue pour les segments et de façon plus générale pour les autres éléments dessinés.
- Si vous avez placé un point à côté de la position souhaitée, cliquer sur le bouton
 Modifier des points de la barre des Outils, puis cliquer sur le point à déplacer : vous pourrez alors le faire glisser à l'aide de la souris ou corriger ses coordonnées dans le tableau. Cliquer sur Créer des points et des segments fin de poursuivre la définition de la géométrie.
- Vous pouvez à tout moment annuler/rétablir les dernières actions dans la construction de la géométrie en cliquant sur le bouton Annuler
 ou sur le bouton Refaire
 dans la barre des « Raccourcis ».
- Les coordonnées de la souris sont affichées en permanence en bas à droite de l'écran de dessin. De plus, les coordonnées des points créés apparaissent automatiquement dans le tableau du volet des propriétés à droite.
- Par défaut, les numéros des points et segments sont affichés sur le dessin. Si vous souhaitez retirer cet affichage, utiliser le menu Projet , Paramètres avancés... et décocher les cases Afficher les noms des points et/ou Afficher les noms des segments.
- Plusieurs outils vous permettent de zoomer/dézoomer dans l'affichage graphique à l'aide de la barre d'options **Zoom**, boutons **P**, **P**, **P**, **R** et **P**.

Lorsque vous avez terminé de tracer le terrain naturel (TN), celui-ci apparaît en traits épais : l'enveloppe du terrain est reconnue automatiquement.

Figure 6. Reconnaissance automatique de l'enveloppe du terrain

- 2. Saisie des coordonnées directement sur l'écran principal :
 - Cliquer dans la zone de saisie dans la barre d'état en bas à gauche de l'écran : saisir les coordonnées X et Y du point à représenter en les séparant par un espace. Ecrire par exemple pour le point 2 : -10.75_15. Puis appuyer sur la touche *Entrée* du clavier. Le fond de la zone de saisie devient alors bleu, cela signifie que le prochain point saisi sera relié au précédent par un segment. Pour "lever le crayon", appuyer sur la touche *Echap* du clavier. Le fond de la case de saisie redevient alors blanc. Le prochain point saisi ne sera pas relié au précédent par un segment. Vous pouvez à tout moment passer du mode dessin à la souris au mode de saisie des coordonnées.

- Cette même zone de saisie peut être utilisée pour relier des points déjà créés. Par exemple, pour relier le point 2 au point 3 : saisir 2, appuyer sur la touche *Entrée* du clavier puis saisir 3 et la touche *Entrée* de nouveau : il est donc possible de saisir indifféremment soit des couples de coordonnées, soit des numéros de points existants. De même que précédemment, pour "lever le crayon", appuyer sur la touche *Echap* du clavier.

Création directe de la géométrie	
2	2

- 3. Pour saisir ou vérifier la géométrie via le tableau du volet des propriétés :
 - Choisir l'item Géométrie [18] de l'arborescence du projet. Les propriétés du projet de la Figure 7 apparaissent (onglets Points et Segments). Si vous avez déjà saisi des points à la souris, ceux-ci figurent dans le tableau.
 - Pour corriger des coordonnées, cliquer simplement dans les cases correspondantes. Pour saisir de nouveaux points, compléter les 2 cases correspondants aux coordonnées X et Y puis cliquer sur le bouton Ajouter nouveau point +.

Points (6) Segments (5) Nouveau point : X -10.75 Y 15													
۲P	Propriétés du projet												
[Image: Segments (5) Segments (6)												
	Nou Veuille	veau point : X Y z saisir ci-dessus des coordonnées, en m		Nouv Veuillez	reau segment : Point 1 F saisir ci-dessus des points pour créer un	Point 2 n segment entre	e ces points						
	N°	X (m)	Y (m)	1		N°	Point 1	Po	pint 2	4			
	1	-100,000	15,000	-		1	1		2				
	2	-10,750	15,000	1		2	2		3				
	3	-2,000	10,000			3	3		4				
	4	0,000	10,000			4	4		5				
	5	0,000	2,000			5	5		6	5			
	6	30,000	2,000			6	7		3	5			
	7	-100,000	10,000										

Figure 7. Volet des propriétés "Géométrie du projet", onglets "Points" et "Segments"

<u>Astuce</u> : pour passer d'une case à l'autre (de gauche à droite sur la même ligne, ou à la ligne suivante en fin de ligne), l'utilisateur peut utiliser la touche *Tab* du clavier. La combinaison des touches *Shift* +*Tab* permet de se déplacer d'une case à l'autre dans l'autre sens.

Les points créés via ce tableau ne sont pas automatiquement reliés par des segments. Il convient donc de renseigner les segments via le deuxième onglet.

Lorsque tous les points sont définis, cliquer sur l'onglet **Segments** (Figure 7) : le tableau de l'ensemble des segments déjà définis apparaît alors. Il est possible de modifier ou ajouter des segments, comme pour les points.

Si nécessaire, il est possible de gérer l'enveloppe manuellement dans les propriétés de la phase (en modifiant la liste des segments qui la constitue). Mais il est recommandé, si possible, de conserver le mode automatique (pour que l'enveloppe puisse être modifiée automatiquement).

Figure 8. Projet après définition de la géométrie

Remarque importante :

Le projet doit toujours être défini avec l'amont à gauche et l'aval à droite (le sens du glissement doit être de la gauche vers la droite).

Si vous avez défini votre projet dans l'autre sens, vous avez la possibilité de le « retourner » automatiquement avec le menu **Projet** spis l'option **Retourner la coupe de sol**.

D.1.3 Etape 3 : définition des caractéristiques de sol

Deux couches de sol sont à définir. Leurs caractéristiques sont données dans le tableau cidessous.

Couche de sol	γ (kN/m³)	φ (°)	C (kPa)	Q₅ (kPa)
1	20	35	5	-
2	20	30	10	130

Tableau 1. Caractéristiques des sols

- Sélectionner l'item Caractéristiques des sols de l'arborescence du projet. Cliquer sur le bouton Créer nouvelle couche de sol 1 (1), puis compléter les données pour la première couche (Figure 9). Les unités à utiliser sont celles définies au début du projet. Elles sont rappelées dans tous les écrans de saisie (en l'occurence, kN, m et degrés).
- 3. Pour passer d'une couche de sol à l'autre, cliquer sur le libellé de la couche dans la liste à gauche de la boîte de dialogue.

Arborescence du p Projet "Tutor Caractér Caractér Caractér Caractér Caractér Caractér Caractér Caractér Caractér Renforce Renforce Retour Ca	Projet "Tutoriel Talren" (1) Science Structures (7 / 6) Caractéristiques des sols (2) Surcharges Renforcements Ajouter une nouvelle phase Propriétés du projet Propriétés du projet Retour Caractéristiques des sols Scuches de sol du projet (2) 1 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6										
Couche 1	Nom	Couche 1	1 3								
	γ (kN/m ³)	20,0	Favorable								
	c (kPa) Cohésion	5,0 Effective	∆ _c (kPa/m) ✓	0,0							
	Anisotropie										
2	φ(°)	35,00									
	Courbe										
Forcer l'affichage de tous les paramètres relatifs aux clou											
	Coefficients de sé	écurité spécifique	!S	~							
	🥠 E	xporter vers la b	ase de donnée	es							
Base de dor	nnées										
J 16:43:3	4 : Couleur modifiée										

Figure 9. Volet des propriétés des caractéristiques de sols (couche 1)

Il est possible de modifier le nom de la couche dans la case correspondante.

Il est également possible de modifier la couleur de chaque couche en cliquant sur la zone de couleur à côté du nom de la couche.

Pour affecter les couches définies aux différents volumes de sol, effectuer un « cliquerglisser » depuis la couche de sol des propriétés vers la zone de sol souhaitée : la zone de sol doit prendre la couleur de la couche de sol attribuée. Répéter l'opération pour attribuer des caractéristiques à toutes les zones de sol. Vous devez alors obtenir l'écran illustré sur la Figure 10.

Figure 10. Coupe du projet après attribution des caractéristiques de sol

Pour modifier l'attribution d'une couche de sol, une autre solution consiste à cliquer dans la zone de sol et à choisir dans le menu contextuel la couche de sol voulue.

IMPORTANT

Talren n'affiche que les données strictement nécessaires. Or les clous ne sont pas encore définis, et Talren ne « sait » donc pas encore que les clous traversent la couche 2. La donnée q_s n'est donc pas visible sur la Figure 9, sauf si l'on coche l'option **Forcer l'affichage de tous les paramètres relatifs aux clous** au préalable.

Nous définirons donc cette donnée après avoir défini les clous.

A tout moment, vous avez accès à des tableaux récapitulatifs des caractéristiques des couches de sol, des renforcements et des surcharges, par le menu **Projet** et l'une des 3 options **Tableau récapitulatif...** (exemple ci-dessous). Attention : ces tableaux récapitulatifs permettent la visualisation et l'export des données, mais pas leur modification.

🔽 Table	Tableau récapitulatif des couches de sol X																
Couches de sol (2)																	
	Nom	Couleur	γ	φ	с	Δc	qs clous	pl	KsB	Anisotro	Favorable	Coefficients de sécurit	Гу	Гс	Γ _{tan(φ)}	Type de c	Courbe
1	Couche 1		20,0	35,00	5,0	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
2	Couche 2		20,0	30,00	10,0	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
							1	Copier	🛬 Expo	rter I	Fermer						

Figure 11. Tableau récapitulatif des caractéristiques des couches de sol

D.1.4 Etape 4 : définition des surcharges

Il s'agit de définir une surcharge répartie sur le segment à la cote +15.0, entre x = -100 m et x = -10,75 m. Cliquer sur l'item **Surcharges** dans l'arborescence du projet.

Nous allons utiliser dans cet exemple successivement les 2 méthodes disponibles :

- <u>Dessin à la souris</u>: cliquer sur le bouton Créer des charges réparties de la barre des Outils. Effectuer un « cliquer glisser » de la souris, de la gauche vers la droite afin de déterminer le point gauche puis le point droit de la surcharge. Zoomer puis rectifier manuellement si nécessaire dans les propriétés de la surcharge. La surcharge apparaît alors sur le dessin (par défaut, elle est verticale orientée vers le bas). Il faut ensuite compléter le volet Propriétés du projet pour renseigner les propriétés de la surcharge (au moins sa valeur à chaque extrémité).
- <u>Utilisation du volet des propriétés des surcharges</u>: pour saisir la géométrie d'une surcharge manuellement, ou compléter la définition de surcharges déjà dessinées à la souris, utiliser le volet des propriétés du projet. Si vous avez déjà défini une surcharge à la souris, celle-ci apparaît.

Pour modifier des données, cliquer simplement dans les cases correspondantes. Vous pouvez afficher/masquer les libellés des surcharges sur le dessin grâce au menu **Projet** : option **Paramètres avancés...** (case à cocher **Afficher les noms des surcharges**).

w Remorcements				Caractéristiques des sols (2) Surcharges (1)							
— 🚱 Ajouter une nouvel	le phase										
YY Propriétés du projet ────	•••••										
A Retour Surcharges											
Surcharges réparties (1)	Surcharges linéaires et moments										
Charge répartie 1	v (- <	** 1								
Surcharge répartie individ	tuelle				*						
Nom	Charge répartie 1										
Point gauche											
X (m)	-100,000										
Y (m)	15,000										
q (kPa)	10,000										
Point droit											
X (m)	-10,750										
	15.000										
Y (m)	10,000										

Figure 12. Volet des propriétés « Surcharges », onglet « Surcharges réparties »

Pour modifier une surcharge à la souris, cliquer sur le bouton **Modifier des charges** réparties *réparties* de la barre des **Outils** :

- <u>Pour déplacer une extrémité de la zone d'application de la surcharge</u> : cliquer sur le point extrémité de la surcharge à gauche ou à droite. Puis, sans lâcher le bouton gauche de la souris, déplacer le point au nouvel emplacement choisi (si besoin affiner ensuite manuellement dans les propriétés de la surcharge les coordonnées du ou des points déplacés).
- Pour augmenter ou diminuer la valeur de la surcharge à gauche ou à droite : cliquer sur le « coin » haut de la surcharge, à gauche ou à droite, puis, sans lâcher le bouton gauche de la souris, déplacer ce « coin » vers le haut ou vers le bas afin d'augmenter ou de réduire la valeur de cette surcharge.
- <u>Pour déplacer l'ensemble de la surcharge sans autre modification</u> : cliquer sur la surcharge, puis, sans lâcher le bouton gauche de la souris, déplacer l'ensemble.

Pour supprimer une surcharge, il y a 2 possibilités : soit par le volet graphique à gauche en sélectionnant la surcharge et en tapant sur la touche « *Suppr »*, soit par le volet des propriétés en sélectionnant la surcharge dans le menu déroulant et en cliquant sur le bouton **Supprimer la surcharge répartie [**.

<u>Nota</u> : La valeur de l'orientation de la surcharge n'est accessible que lorsqu'on sélectionne la méthode **Calcul à la rupture**, sinon celle-ci reste fixée à 90°.

Figure 13. Géométrie des surcharges réparties

D.1.5 Etape 5 : définition des clous

Nous devons définir 4 lits de clous. Il convient de les définir tous dans les propriétés du projet. Ensuite, ils seront activés au fur et à mesure de l'avancement du phasage.

Il existe différents modes de travail des clous (cf. Partie C du manuel). Dans cet exemple, nous souhaitons calculer la traction et imposer un cisaillement nul.

Ils sont tous identiques sauf pour leur longueur et la cote de leur tête. Leurs caractéristiques sont données dans le Tableau 2

Clou	Ø _{barre} (m)	σ e (MPa)	Esp (m)	X (m)	Y (m)	L (m)	Angle (°)	L _B (m)	Α_{LB} (°)	R _e (m)
1	0.04	500	2	0	9	12	10	2	10	0.065
2	0.04	500	2	0	7	12	10	2	10	0.065
3	0.04	500	2	0	5	12	10	2	10	0.065
4	0.04	500	2	0	3	9	10	2	10	0.065

Tableau 2. Caractéristiques des clous

Pour l'ensemble de 4 lits de clous, on choisira également :

- R_{sc} ou q_s issus des Abaques : cela a une incidence sur le coefficient de sécurité partiel pris en compte sur la valeur de q_s;
- R_{sc} (résistance du scellement) calculée à partir de q_s ;
- Règle de calcul : Traction calculée et cisaillement imposé
- Cisaillement non variable le long du clou ;
- Calcul de la traction seulement sur la partie externe à la surface de rupture.

Cliquer sur l'item **Renforcements** dans l'arborescence du projet. Il y a deux 2 possibilités pour définir les renforcements : dessin à la souris ou utilisation du volet des propriétés des renforcements dans le volet droit. Nous allons utiliser dans cet exemple successivement les 2 méthodes.

- Pour compléter les données relatives à ce clou (ou le définir complètement si vous ne souhaitez pas effectuer l'étape précédente à la souris), utiliser le volet des propriétés. Si vous avez déjà défini le 1^{er} clou à la souris, l'onglet **Clous** apparaît dans le volet **Renforcements**. Compléter alors ses données (en cliquant simplement dans les cases correspondantes).

Clous et familles et familles et familles et la service de la service	du projet (4)	± ≤	ä í 🛍 ,
Clou 1			
Clou individuel			
Nom	Clou 1		
X (m)	0,000	Y (m)	9,000
Longueur (m)	12,000		
Espacement (m)	2,000	Angle (°)	10,00
Diffusion			
Largeur base (m)	2,000	Angle (°)	10,00
Notes de TR dese é	-		
Φ (m)	e 0.040	cr (kDa)	5 00505
barre -	0,040	lim (KPa)	3,00203
Frottement			
qs _{clous} issus de	Abaques	~	
🗹 Rsc calculée à part	ir de qs		
Rayon équi. (m)	0,065		
Pàgla da calqui	Traction coloulée e	t ois sillement impos	
Cisaillement variable	(le long du clou)	a cisamement impos	v V
Rcis (kN)	0.0		
Cal. de traction	Externe	~	

Figure 14. Volet « Renforcements », onglet « Clous »

Il existe une figure d'aide concernant la diffusion des contraintes d'un renforcement en cliquant sur le bouton .

Figure 15. Schéma sur le principe de diffusion de contraintes d'un renforcement

Comme les autres niveaux de clous ont quasiment les mêmes caractéristiques, cliquer sur le bouton **Dupliquer** 3 fois. Sélectionner ensuite chacun des nouveaux clous ainsi créés

(en cliquant dans la liste déroulante) et modifier uniquement ce qui est nécessaire, à savoir : cote de la tête du clou et longueur du clou.

Vous pouvez afficher ou masquer les libellés des clous sur le dessin grâce au menu **Projet**, option **Paramètres avancés...** (case à cocher « Afficher les noms des renforcements »).

Après définition de tous les clous, vous devez obtenir maintenant le modèle illustré sur la Figure 16.

Figure 16. Modèle après définition des clous

Maintenant que les clous ont été définis, il faut retourner dans les **Caractéristiques des sols** \boxed{III} pour définir la valeur de q_s pour la couche 2. Cette fois, la case q_s pour la couche 2 est visible (Figure 17), alors qu'elle ne l'est pas pour la couche 1 : q_s n'est visible pour une couche que si des clous traversent la couche.

Propriétés du projet						
🥞 Couches	de so	l du projet (2)		± •	s í 🛍 🍐	
Couche 1 Couche 2	>	Nom γ (kN/m ³)	Couche 2 20,1	Favorable		
		c (kPa) Cohésion Anisotropie	10,1 Effective	∆ _c (kPa/m) ✓	0,0	
		φ(°) Courbe	30,00 Linéaire	~		
	E	Forcer l'affichage de tous qs _{clous} (kPa)	<u>e les paramètres r</u> 130,0	elatifs aux clous		
		Coefficients de sécurité s	pécifiques			
			Exporter vers la t	ase de données		
间 Base de d	ionné	es				

Figure 17. Volet des propriétés des caractéristiques de sols (couche 2)

D.1.6 Etape 6 : définition des niveaux de terrassement intermédiaires

Nous avons défini jusqu'à présent la géométrie de la situation définitive. Mais nous souhaitons également effectuer une vérification des phases provisoires d'exécution. Il faut donc définir des points et segments supplémentaires nécessaires pour les phases de terrassement intermédiaires : cotes +10.0, +8.5, +6.5, +4.5 et +2.5 m (Figure 18). Nous aurions d'ailleurs tout-à-fait pu définir tout de suite (étape 2) l'ensemble de la géométrie.

Le dessin de ces points et segments supplémentaires se fait de façon analogue à la définition de la géométrie initiale (voir étape 2 pour les 3 méthodes possibles). Ensuite, il faut attribuer les caractéristiques de la couche 2 aux nouvelles zones de sol créées.

L'enveloppe est modifiée automatiquement pour correspondre au terrain naturel initial.

Figure 18. Modèle après définition des terrassements intermédiaires

Toutes les données définissant le projet sont maintenant saisies.

Il faut donc passer à la définition du phasage en cliquant sur **Ajouter une nouvelle phase** O de l'arborescence du projet ou en cliquant sur le bouton Ajouter une nouvelle phase (2) des propriétés de la phase :

Arborescence du proiet
Rojet "Tutoriel Talren " (1)
- R Caractéristiques des sols
- G Surcharges
- the Renforcements
Ajouter une nouvelle phase
AY
Propriétés de la phase
😡 Ajouter une nouvelle phase avec l'assistant

Figure 19. Définition de la 1^{ère} phase

Lors de la création de la 1^{ère} phase, Talren lui attribue par défaut la géométrie et les couches de sol déjà définies à ce moment dans le projet. Les surcharges et les renforcements sont désactivés par défaut. Leur gestion en revient à l'utilisateur.

D.1.7 Etape 7 : définition de la phase 1

La 1^{ère} phase correspond aux opérations suivantes :

- Terrassement à la cote +8,50 (qui permettra d'exécuter le 1^{er} lit de clous).
- Mise en place du 1^{er} lit de de clous.
- Terrassement à la cote +6,50 m.

Par défaut, la 1^{ère} phase est générée automatiquement avec l'activation de toutes les zones de sol et la désactivation de tous les renforcements et des surcharges.

Pour modifier la géométrie du projet dans une phase, il suffit d'activer ou désactiver des zones de sol en cliquant dessus. Il en va de même pour les surcharges et les renforcements.

- Pour créer le 1^{er} niveau de terrassement, il suffit donc de cliquer à l'intérieur des 2 zones de sol figurées comme désactivées (non colorées) sur la Figure 20. Pour activer ou désactiver un élément, il convient de sélectionner une Phase dans l'arborescence du projet, et d'utiliser le bouton set des renforcements a dans la barre d'outils, activé par défaut.
- Pour activer le lit de clous, il suffit de cliquer dessus ou bien d'utiliser le bouton Activer des renforcements *pour* sélectionner uniquement les éléments de renforcement et de cliquer sur le lit de clou à activer.

Figure 20. Définition de la phase 1

Le volet des propriétés à droite permet de modifier les propriétés de la phase en cours (cf. Figure 21).

Dans cet exemple, il n'y a pas de conditions hydrauliques à définir.

L'enveloppe est déterminée automatiquement. Laisser la case « enveloppe manuelle » décochée.

Cette manipulation n'est pas nécessaire pour notre exemple, mais il serait également possible de modifier les caractéristiques de sol attribuées à une zone de sol (simulation d'une amélioration de sol par exemple) : pour cela, cliquer avec le bouton droit de la souris puis choisir la couche de sol souhaitée (elle doit avoir été définie au préalable dans les **Caractéristiques des sols**].

- 💬 Phase "1"			
v	•••••		
lom	1		
Conditions hydrauliques	Néent		
Jonditions hydrauliques	Neall		Ť
Nappe extérieure manuelle	Définir 🔄		
ru par couche	Définir 😒		
Enveloppe manuelle	Définir 🔄		
Multiplicateur par surcharge	Définir 😒		
Assistant poussées/butées	Définir 🤟		
Activer/désactiver des objets Polygones Polygone entre les points	\$1,2,3,7		
Activer/désactiver des objets			
Activer/klésactiver des objets Activer/klésactiver des objets Polygones V Polygone entre les points V Polygone entre les points	\$ 1,2,3,7 \$ 3,4,8,10,12,15,5,6,2	D,19,7	
Activer/Missactiver des objets Polygones V Polygone entre les points V Polygone entre les points Polygone entre les points	s 1,2,3,7 s 3,4,8,10,12,15,5,6,2 s 6,5,15,16	D,19,7	
Activer/klésactiver des objets Activer/klésactiver des objets Otygones Otygone entre les points	91,2,3,7 93,4,8,10,12,15,5,6,2 95,5,15,16 84,4,14,9	0,19,7	
Activer/désactiver des objets Polygones Polygone ertre les points Polyg	91,2,3,7 93,4,8,10,12,15,5,6,2 95,5,15,16 83,4,14,9 910,8,9,11 92,3,0,14,12	D,19,7	
Activer/désactiver des objets Activer/désactiver des objets Polygone Polygone ertre les points Po	91,2,3,7 3,4,8,10,12,15,5,6,2 6,5,15,16 8,4,14,9 10,8,9,11 912,10,11,13 15,12,13,16	0,19,7	
Activer/lésactiver des objets Polygones Polygone entre les points Polyg	12,2,3,7 34,8,10,12,15,5,6,2 6,5,15,16 8,4,14,9 10,8,9,11 12,10,11,13 15,12,13,16 14,0,0,044x,244in,18	0,19,7	
Activer Mésactiver des objets Polygone artre les points Polygone entre l	1,2,3,7 3,4,8,10,12,15,5,6,2 8,5,15,16 8,4,14,9 10,8,9,11 12,10,11,13 15,12,13,16 11,12,13,16 11,12,2,3,16 11,22,2,348x,x44in,18	0,19,7	
Activer Mésactiver des objets Polygones Polygone entre les points Compartier les points Polygone entre les points Polygone entre les points Compartier les points Polygone entre les points Polygone entre les points Compartier les points Polygone entre les polygone Polygone entre les polygone Polygon	1,2,3,7 3,4,8,10,12,15,5,6,2 6,5,15,16 8,4,14,9 10,8,9,11 12,10,11,13 12,10,11,13 15,12,13,16 19,20,244x,244in,18	0,19,7	
Activer/liésactiver des objets Polygones Polygone ertre les points Polygone ertre les polygone Polygone ertre les polygone	1,2,3,7 3,4,81,01,2,15,5,6,2 8,5,15,16 8,4,14,9 10,6,9,11 12,10,11,13 12,10,11,13 15,12,13,16 15,12,13,16 19,20,3Max,xMin,18	0,19,7	
Activer klésactiver des objets Polygones Polygone ertre les points Surcharges Renforcements Renforcements	11,2,3,7 3,4,8,10,12,15,5,5,5,2 8,5,15,16 8,4,14,9 :10,8,9,11 12,10,11,13 15,12,13,16 :19,20,2Max,2Min,18	0,19,7	
Activer Mésactiver des objets Polygone ertre les points Polygone ertre l	:1,2,3,7 :3,4,8,10,12,15,5,6,2 :8,5,15,16 :8,4,14,9 :10,8,3,11 :10,8,3,11 :15,12,13,16 :15,12,13,16 :19,20,2Mmx,2Min,18	0,19,7	
Activer/Mésactiver des objets Polygones Polygone ertre les points Polyg	:1,2,3,7 :3,4,8,10,12,15,5,6,2 :8,5,15,16 :8,4,14,9 :10,8,9,11 :12,10,11,13 :15,12,13,16 :19,20,2MMax,2MMin,18	0,19,7	
Activer Mésactiver des objets Activer Mésactiver des objets Activer Mésactiver des objets Activer Mésactiver des points Activer Mésace entre les points Activer Mésace	:1,2,3,7 3,4,8,10,12,15,5,5,2 3,6,5,15,16 8,4,14,9 10,6,9,11 12,10,11,13 15,12,13,16 119,20,04fax,04fin,18	0,19,7	

Figure 21. Volet des propriétés pour la 1ère phase

Il reste donc ensuite à définir les **situations de calcul**. Pour cette phase, on étudiera 2 situations.

D.1.7.1 Définition et calcul de la situation 1

Il convient maintenant de créer la 1^{ère} situation :

- en sélectionnant l'item Ajouter une nouvelle situation de l'arborescence du projet (1) (Figure 22) ou en cliquant sur l'item Ajouter une nouvelle situation dans le menu contextuel de la phase
- et en double-cliquant sur le bouton 24 Ajouter une nouvelle situation (2).

- Arborescence du projet	
Revealed a project (1)	
Géométrie (6 / 5)	
— 💀 Caractéristiques des sols	
— 🔒 Surcharges	
— 🕹 Renforcements	
- O Phase "1"	
∑ Ajouter une nouvelle situation	
🖳 🚱 Ajouter une nouvelle phase	
- Pronriétée de la eituation	
Σ A journal of a polyalia situation 2	
Ajouter une nouvelle situation avec l'assistant	

Figure 22. Création de la 1^{ère} situation

Il faut ensuite définir les propriétés de cette situation dans le volet de propriétés, et notamment : pondérations partielles et surfaces de rupture :

- <u>Méthode de calcul</u> : **Bishop** (option choisie par défaut dans la description générale).
- <u>Pondérations partielles</u> : **Clouterre Fondamental / Ouvrage courant** (option choisie par défaut dans la description générale).
- <u>Surfaces de rupture</u> : nous allons choisir par exemple pour cette 1^{ère} situation des surfaces de rupture circulaires passant en pied d'excavation, en mode recherche

automatique. Les données correspondantes apparaissent sur la Figure 23 et la Figure 24. (on accède à l'écran de la Figure 24 après avoir sélectionné **Circulaire** automatique, puis cliquer sur le bouton Définir (section de la Pigure 24).

La valeur **abscisse émergence limite** (aval) égale à -1.0 garantit que Talren ne retiendra pas les cercles dont le point d'émergence « à droite » a une abscisse inférieure à -1.0. En l'occurrence, on veut éviter de vérifier la stabilité du talus supérieur dans la couche 1 : on veut vérifier la stabilité de l'ensemble du projet. Valider en cliquant sur le bouton **R**etour.

Le bouton permet de définir l'abscisse d'émergence limite en cliquant sur le dessin. De façon analogue, le bouton *en permet de définir le point de passage imposé en cliquant sur le dessin.*

- Nombre de tranches : il est par défaut égale à 100.
- <u>Séisme</u> : il n'y a pas de conditions sismiques à définir pour cette situation.

Propriétés de la situation			
Nom	1		
Méthode de calcul	Bishop		~
Jeu de coef. de sécurité	Clouterre	fondamental/courant	~
		Voir 🍉	
Surface de runture	Circulaire	automatique	~
	on out an o	Définir 🐸	
		Denini 🚽	
Nambro do transhoo		100	
Nombre de trancnes		100	
Cáisme			
	an/g	0,000	
	av/g	0,000	
Conditions de passage	(0)	Définir 🔄	
Etude de sensibilité ou de risque		Définir 🔄	
Calculer la situation courante		Calculer 👷	
Calculer la phase		Calculer 🤯	
Calculer le projet		Calculer 🍓	
Accéder aux résultats		Accéder 🗽	
Supprimer les résultats		Supprimer	
			[serial = 1]

Figure 23. Définition de la situation 1 de la phase 1

Figure 24. Définition des surfaces de rupture à générer automatiquement pour la situation 1 de la phase 1

Figure 25. Modèle après définition de la situation 1 de la phase 1

Calcul et résultats

Pour effectuer le calcul de cette situation, cliquer sur le bouton **Calculer la situation** courante calculer a le server dans les **Propriétés de la situation** ou bien cliquer sur le bouton **Calculer la situation courante** de la barre de boutons **Calcul**. Le calcul s'effectue puis le résultat s'affiche (Figure 26) : le cercle affiché par défaut est celui qui correspond au coefficient de sécurité minimal.

Figure 26. Résultat affiché par défaut pour la situation 1 de la phase 1

La valeur du coefficient de sécurité affichée à côté de chaque centre est la valeur minimale obtenue pour tous les cercles calculés à partir de ce centre (si vous avez défini un incrément sur le rayon non nul). Cliquer sur un centre pour afficher le cercle correspondant à cette valeur minimale du coefficient de sécurité.

Le bouton a permet de copier la zone graphique dans le presse-papiers pour ensuite la coller dans une autre application (pour rédiger un rapport par exemple).

Le résumé des résultats est également disponible dans le volet des propriétés à droite :

Figure 27. Volet des propriétés - Résumé des résultats du calcul

Pour modifier l'affichage graphique des résultats, sélectionner l'option **Propriétés** d'affichage dans les **Propriétés de la situation**. Le volet illustré sur la Figure 28 apparaît alors. Il permet notamment d'afficher :

- Les valeurs du coefficient de sécurité sous forme d'isovaleurs (dégradés de couleurs);
- Les valeurs du coefficient de sécurité appartenant à une fourchette définie par une borne inférieure et une borne supérieure.

D	Propriété	s d'affichage	O Produce to	
Par surface	Par rento	orcement	Par tranche	
sovaleurs	Afficher	les isovaleur:	s	
	Mode contin	nu doux (plus	lent)	
F _{min} pour les	s isovaleurs		1,4181	
F _{max} pour le	s isovaleurs		4,2585	
Voir tou	ites les valeurs	Cibler les p	etites valeurs	
	Centre crit	ique : 1.4181		
	Meilleur ce	entre : 15.62		
Surfaces	Afficher toutes le	es surfaces d	le rupture	
M Activer	la borne inférieure	e de F	1,4181	
🗹 Activer	la borne supérieur	re de F	1,6500	
	Voir toutes	les surfaces]	
		s affichées : 1	149/1753	
No	ombre de surface:	o armono oo		

Figure 28. Volet de paramétrage de l'affichage graphique

Figure 29. Exemple de représentation de tous les cercles calculés

Il est possible d'accéder à des résultats plus détaillés, notamment sous forme de tableaux :

Propriétés de la	situation	
🔄 Retour	Résumé des résultats	
Résumé	Propriétés d'affichage	
Par surface	Par renforcement 3 Par tranche	

- 1. **Par surface :** tableau des résultats détaillés par surface de rupture (cf. Figure 30). La ligne surlignée en rouge correspond à la surface de rupture critique. Lors d'un clic sur une ligne du tableau, le cercle correspondant apparaît sur le dessin.
- 2. Par renforcement : tableau des efforts mobilisés dans les renforcements (ici le 1^{er} lit de clous) (cf. Figure 31). Pour visualiser la signification des différentes colonnes du tableau, positionner le curseur de la souris dans l'entête de colonne du paramètre qui vous intéresse et visualiser l'info-bulle. Par défaut, les résultats s'affichent pour la surface de rupture critique. Il est possible de changer la surface de rupture sélectionnée (via la liste déroulante) pour visualiser ces résultats pour toute autre surface de rupture calculée.
- 3. **Par tranche** : tableau des résultats détaillés par tranche. Ce volet de propriétés permet de visualiser, pour le cercle critique par défaut, le tableau détaillé des tranches et un graphique illustrant les courbes des efforts normaux, efforts de cisaillement et pressions interstitielles le long de la surface de rupture. Il est possible de changer de surface de rupture (via la liste déroulante) pour visualiser ces résultats pour toute autre surface de rupture calculée.

Setec

Par si	urface	6	Par renf	orcement		Par tranch	e
N°	x _o	Y ₀	R	М _{МОТ}	F-SOL	F-SURCH	F-TOTAL
1328	-0,950	17,880	13,420	10200,9	1,4348	1,4348	1,5081
1329	-0,950	17,880	10,920	4136,95	1,2388	1,2388	1,6768
1330	-0,950	17,880	10,420	3161,16	1,2882	1,2882	2,0532
1331	-0,950	17,880	9,920	2298,90	1,3603	1,3603	3,0488
1332	-0,950	17,880	9,420	1575,27	1,4609	1,4609	13,4403
1333	-0,950	17,880	8,920	986,6941	1,6151	1,6151	1,6151
1334	-0,510	18,510	12,020	5425,55	1,1666	1,1666	1,4600
1335	-0,510	18,510	12,520	6660,25	1,2129	1,2129	1,4186
1336	-0,510	18,510	13,020	7938,13	1,2778	1,2778	1,4281
1337	-0,510	18,510	13,520	9274,32	1,3336	1,3336	1,4432
1338	-0,510	18,510	14,020	10650,7	1,4131	1,4131	1,4931
1339	-0,510	18,510	11,520	4279,34	1,2030	1,2030	1,6698
1340	-0,510	18,510	11,020	3248,40	1,2544	1,2544	2,0885
1341	-0,510	18,510	10,520	2336,10	1,3310	1,3310	3,3015
1342	-0,510	18,510	10,020	1571,10	1,4425	1,4425	47,8275
1343	-0,510	18,510	9,520	950,2394	1,6221	1,6221	1,6221
1344	-0,060	19,140	12,640	5626,55	1,1367	1,1367	1,4451
1345	-0,060	19,140	13,140	6920,27	1,1996	1,1996	1,4181
1346	-0,060	19,140	13,640	8263,75	1,2643	1,2643	1,4241
1347	-0,060	19,140	14,140	9656,66	1,3372	1,3372	1,4556
1348	-0,060	19,140	14,640	11102,2	1,4013	1,4013	1,4877
1349	-0,060	19,140	12,140	4419,92	1,1728	1,1728	1,6678
1350	-0,060	19,140	11,640	3332,40	1,2281	1,2281	2,1355
1351	-0,060	19,140	11,140	2369,03	1,3095	1,3095	3,6252
1352	-0,060	19,140	10,640	1562,43	1,4318	1,4318	996,0000
1353	-0,060	19,140	10,140	909,9296	1,6399	1,6399	1,6399
							2

Figure 30. Résultats détaillés par surface de rupture

Propriétés de la situation							
Retour Efforts dans les renforcements							
Résumé	Résumé Propriétés d'affichage						
Par surface	Par surface In the surface <pi< td=""></pi<>						
///							
Surface: N°= 1345; X0=	-0,06; Y0= 19,14; R= 13,14	×					
Clou Exportation	Clou Exportation						
Nom LU -	TR ITR IPTR	TC ICIS IPCI					
Clou 1 5,180 15	2,770 2 1	0,000 0 0					
	· · ·						

Figure 31. Efforts dans les renforcements

D.1.7.2 Définition et calcul de la situation 2

Il faut tout d'abord créer une nouvelle situation. Plusieurs méthodes sont possibles :

- soit dans les Propriétés de la phase en cliquant sur l'item Ajouter une nouvelle situation ;
- soit en cliquant droit sur la situation 1 puis dans le menu contextuel sélectionner Insérer une nouvelle situation après 4.

Il aurait été également possible, de la même manière, de dupliquer la situation 1 en cliquant sur le buton sur le buton sur le buton sur le situation ou de définir ses propriétés, comme pour la situation 1.

Figure 32. Menu contextuel (clic droit sur une situation)

La duplication de situations fonctionne uniquement à l'intérieur d'une même phase. Par contre, la copie de situations fonctionne d'une phase à l'autre : il est possible de copier une situation dans une phase et de la coller dans une autre phase.

Nous allons définir les mêmes propriétés que pour la situation 1, avec les modifications suivantes :

- pour les surfaces de rupture : nous allons choisir cette fois-ci des surfaces circulaires, mais en recherche manuelle,
- le nombre de tranches passe à 150.

Propriétés de la situation					
Nom	2				
Méthode de calcul	Bishop	~			
Jeu de coef. de sécurité	Clouterre	fondamental/courant			
		Voir 🛬			
Surface de rupture	Circulaire manuelle V				
		Définir 🛬			
Nombre de tranches		150			
Séisme	ah/g	0,000			
	av/g	0,000			
Conditions de passage	(0)	Définir 🛬			

Figure 33. Définition de la situation 2 de la phase 1

Un clic sur le bouton Définir Saffiche l'écran de la Figure 34. Saisir les paramètres indiqués sur cette figure (cela va permettre une étude plus approfondie des cercles autour du minimum repéré par la recherche automatique de la situation 1).

Retour	Surface d	e rupture	manue	lle			
Coin inférieur g	auche de la	zone de re	cherche				
	X (m)		-1,000	Y (m)		22,000	Ø
Incrément en X	/ Incrément (en Y					
	X (m)		1.000	V (m)		1.000	
A I	× (m)		1,000	r (m)		1,000	
Angle par rappl	ort a morizoi	ntale / a la '	verticale				
	H (°)		0,00	V (°)		0,00	
Nombre de cen	tres en X / e	nΥ					
	х		8	Y		8	
Incrément sur le	e rayon (m)			0,500)		
Nombre d'incréi	ments		10				
Abs émera lim	ite (m)			-1.000	H H		
Abs. emerg. imite (m)				-1,000	6		
T		Defet de la		· t			
Type de recher	che	Point de	passage	impose			
	X (m)		0,000	Y (m)		6,500	Ċ
Nombre de sur	faces susce	ptibles d'é	tre calc	ulées : 6	40		

Figure 34. Définition des surfaces de rupture à examiner pour la situation 2 de la phase 1

Calcul et résultats

Procéder de la même façon que pour la situation 1. Le résultat obtenu est affiché sur la Figure 35.

Figure 35. Résultat obtenu pour la situation 2 de la phase 1

D.1.8 Etape 8 : définition de la phase 2

Cette phase de vérification correspond aux opérations suivantes :

- Mise en place du 2^{ème} lit de clous ;
- Terrassement à la cote +4,50 m.

Pour ajouter une phase : sélectionner le menu **Ajouter une nouvelle phase** de l'arborescence du projet, puis cliquer sur le bouton Ajouter une nouvelle phase ou en double cliquant sur le menu **Ajouter une nouvelle phase**. Par défaut, la phase ajoutée reprend le paramétrage de la phase précédente.

La définition de cette phase se fait de façon analogue à celle de la phase 1, par activation/désactivation des éléments de sol et de clous. La coupe obtenue est représentée sur la Figure 36.

Figure 36. Définition de la phase 2 de calcul

On étudiera cette fois une seule situation de calcul.

Il suffit donc de définir les propriétés de la situation générée par défaut :

- Méthode de calcul : Bishop ;
- Pondérations partielles : Clouterre Fondamental / Ouvrage courant ;
- Sismique : pas de conditions sismiques pour cette situation ;
- Définition des surfaces de rupture : surfaces circulaires passant en pied d'excavation (la cote du point de passage est égale à +4,50 m au lieu de +6,50 m), en recherche automatique. Les données correspondantes sont indiquées sur la Figure 37 :

Propriétés de la situation											
🔄 Retour	etour Surface de rupture automatique										
Nombre de déco	oupages		10								
Incrément sur le rayon (m)			0,500								
Abs. émerg. limi		-1,000	₩								
Type de rechero	Point de	Point de passage imposé									
	X (m)	0,000	Y (m)		4,500	Ì					
Nombre de surfaces susceptibles d'être calculées : 2000											

Figure 37. Définition de la situation 1 de la phase 2

Calcul et résultats

Procéder de la même façon que pour la situation 1 de la phase 1. Le résultat obtenu est affiché ci-dessous.

Figure 38. Résultat obtenu pour la situation 1 de la phase 2

Nous constatons que le centre pour lequel le coefficient F_{min} est atteint se situe sur le périmètre du 2^{ème} balayage. A ce stade, il conviendrait de réaliser une situation supplémentaire avec une recherche manuelle autour de ce point pour le valider ou pour retrouver un point pour lequel on retrouve un coefficient F_{min} encore plus petit.

Compte tenu du fait que nous allons retrouver des valeurs F_{min} inférieurs dans les phases postérieures, nous décidons de ne pas examiner cette situation à ce stade.

D.1.9 Etape 9 : définition de la phase 3

Cette phase de vérification correspond aux opérations suivantes :

- Mise en place du 3^{ème} lit de clous ;
- Terrassement à la cote +2,50 m.

La définition de cette phase se fait de façon analogue à celle des phases précédentes, par activation/désactivation d'éléments de sol et de clous. La coupe obtenue est représentée sur la Figure 39.

Figure 39. Définition de la phase 3

On étudie d'abord une 1^{ère} situation de calcul, en **recherche automatique**.

Il suffira de définir les propriétés de la situation générée par défaut, avec les mêmes paramètres que pour la situation 1 de la phase 2, excepté pour la cote du point de passage imposée égale cette fois-ci à +2,50 m.

Calcul et résultats

Procéder toujours de la même manière que pour les phases précédentes. Le résultat obtenu est affiché ci-dessous.

Figure 40. Résultat obtenu pour la situation 1 de la phase 3

Le coefficient de sécurité ne semble pas être encadré « de près ». Nous décidons à ce moment-là d'étudier une 2^{ème} situation en recherche manuelle, en définissant un

quadrillage de centres autour du minimum trouvé lors de la recherche automatique de la 1^{ère} situation.

Les paramètres de la recherche manuelle de la 2^{ème} situation sont les suivants :

Propriétés de la «	situation —								
Retour Surface de rupture manuelle									
Coin inférieur cauche de la zone de recherche									
X (m) 8 000 Y (m) 24 000 3									
Incrément en X /	Incrément	en V	0,000	. (,		21,000			
increment on X7	V (m)	GILL	2 000	V (m)		2 000			
	A (III)	untalo / à k	2,000	r (iii)		2,000			
Angle par rappo		male / a la	o oo			0.00			
Nambas da anal	п(")	- 1/	0,00	v (*)		0,00			
Nombre de centi	res en X / e	en Y							
	х		8	Ŷ		8			
Incrément sur le rayon (m)			0,500						
Nombre d'incréments				:	2				
A	- ()			4.00	Ha				
Abs. émerg. limite (m)				-1,000					
Type de rechero	ne	Point de	passag	e impose			Ň		
	N (m)		0.000	N(()		0.500	-2		
	X (m)		0,000	Y (M)		2,500	G		
Marshar da									
nombre de surfaces susceptibles d'etre CâlCülées : 320									

Figure 41. Paramètres de recherche manuelle de la 2^{ème} situation de la 2^{ème} phase

Le résultat de cette 2^{ème} situation est donné sur la Figure 42 : le coefficient de sécurité est cette fois encadré, mais inférieur à 1,00.

Figure 42. Résultat obtenu pour la situation 2 de la phase 3

D.1.10 Etape 10 : définition de la phase 4 (phase définitive)

Cette phase de vérification correspond aux opérations suivantes :

- Mise en place du 4^{ème} lit de clous ;
- Terrassement à la cote +2,00 m ;
- Activation de la surcharge en tête de talus.

La définition de cette phase se fait de manière analogue à celle des phases précédentes, par activation du dernier lit de clous. La coupe obtenue est représentée sur la Figure 43.

Figure 43. Définition de la phase 4 de calcul (phase définitive)

D.1.10.1 Définition de la situation 1

On étudie d'abord une 1^{ère} situation de calcul, en **recherche automatique**.

Il suffit donc de définir les propriétés de la situation avec les mêmes paramètres que pour la situation 1 de la phase 3, excepté pour la cote du point de passage imposée égale à +2,00 m.

Figure 44. Résultat obtenu pour la situation 1 de la phase 4

D.1.10.2 Définition de la situation 2 (accidentelle)

Nous allons cette fois étudier une situation accidentelle avec la prise en compte d'un séisme. Il s'agit donc d'ajouter une nouvelle situation et de définir ses propriétés :

 <u>Pondérations partielles</u> : sélectionner le jeu « Clouterre Accidentel / Ouvrage courant ». Pour cela, ce jeu n'étant pas fourni complet dans la base de données livrée avec Talren, il faut d'abord repasser dans la catégorie **Projet** de l'arborescence du projet.

Dans les pondérations par défaut : cliquer sur le bouton Définir 🐦 puis sur le bouton Base de données (1) tout en bas du volet des propriétés. Sélectionner le jeu de pondérations « Clouterre Accidentel / Ouvrage courant » dans la liste déroulante (2) et cliquer sur le bouton Gimporter dans le projet (3). Compléter si nécessaire le jeu de pondérations choisi (4) (s'il comporte des valeurs non définies). Enfin valider par le bouton Retour (5).

Propriétés du pro	ojet Jeux de coefficier	nts de sécurité		Propriétés du pro	ijet Jeux de coefficien	its de sécurité			
🥞 Jeux de	coefficients de sécu	rité du projet (2)	+ 1	🥞 Jeux de	coefficients de sécu	rité du projet (2)			
Clouterre fonda	amental/courant		~	Clouterre fonda	mental/courant		2		
					Ng Imp	orter dans le projet	,		
Nom	Clouterre fondamental/courant			Nom	Clouterre accidente	eVcourant			
Г _{min}	1,000	Γ _{qsl,tirant,ab}	1,000	۲ _{min}	1,000	Γ _{qsl,tirant,ab}			
Γ _{s1}	1,050	Γ _{qsl,tirant,es}	1,000	Γ _{s1}	1,000	Γ _{qsl,tirant,es}			
Γ _{s1}	0,950	Γ _{qsl,bande}	1,000	Γ' _{s1}	1,000	Γ _{qsl,bande}			
Γ _φ	1,200	Г _{рі}	1,900	Γ _φ	1,100	Г _{рі}	1,000		
Г _{о'}	1,500	Γ _{a,clou}	1,150	Г _{о'}	1,400	Γ _{a,clou}	1,000		
Г _{ои}	1,300	Γ _{a,tirant}	1,000	Г _{си}	1,200	Γ _{a,tirant}			
Γ _Q	1,330	Γ _{a,bande}	1,000	Γq	1,000	Γ _{a,bande}			
Γ _{qsl,clou,ab}	1,800	Γ _{buton}	1,000	F _{qsl,clou,ab}	1,600	Fbuton			
F _{gsl,clou,es}	1,400	Γ _{s3}	1,125	F _{qsl,clou,es}	1,300	2 ^{[s3}	1,000		
				Eurocode - For	ndamental - Ouvrage	sensible		^	
				Eurocode - Sis	mique			-6	
				Traditionnel/Sit	. provisoire				
	Exporter	vers la base de données		Traditionne/Sit. définitive					
Clouterre fondamental/courant Clouterre fondamental/sensible									
🤳 Base de	données (13)			Clouterre accidentel/courant					
Eurocode - Fon	damental - Ouvrage	courant	~	Ciouterre accio	entercourant			Ň	

<u>Attention :</u> redéfinir le jeu « Clouterre fondamental / courant » comme jeu de coefficients par défaut pour ce projet.

terrasol

Figure 45. Choix d'un jeu de coefficients pondérateurs partiels

Dans l'exemple ci-dessus, les coefficients de sécurité partiels relatifs aux tirants, bandes et butons ont été complétés pour pouvoir valider le jeu de coefficients, mais ne seront pas utilisés lors du calcul dans notre exemple (seuls ceux des clous sont utilisés).

Les valeurs définies ne constituent donc en aucun cas un exemple ou une référence à réutiliser : il faut définir pour chaque étude des valeurs issues des normes ou recommandations adaptées au projet traité.

- Revenir ensuite à la définition de la nouvelle situation de calcul créée précédemment et choisir le jeu « Clouterre accidentel / courant ».
- <u>Sismique</u> : il faut cette fois cocher la case "Séisme", et définir $a_h/g = 0,12$ et $a_v/g = 0,06$.

Important : dans le cas de sollicitations sismiques, il convient de tester les 4 combinaisons de signe possibles pour le couple (ah/g, av/g). En effet, suivant la géométrie, ce n'est pas toujours la même combinaison qui conduit aux résultats les plus défavorables.

 <u>Surfaces de rupture</u> : nous allons choisir ici les mêmes surfaces de rupture que pour la 1^{ère} situation.

Description de la citaction				
Proprietes de la situation				
Nom	Clouterre ad	c		
Méthode de calcul	Bishop			~
Jeu de coef. de sécurité	Clouterre a	ccidentel/courant		~
		Voir 🔄		
Surface de runture	Circulaire a	utomatique		~
	Circulaire a			•
		Definir 🚽		
Nombre de tranches			150	
🧭 Séisme	ah/g		0,120	
00	av/g		0,060	
Conditions de passage	(0)	Définir 👒		
Etude de sensibilité ou de risque		Dáfinir 🛏		

Figure 46. Définition de la situation 2 de la phase 4

Figure 47. Résultat obtenu pour la situation 2 de la phase 4

D.2 Tutoriel 2 : Stabilité de pente sous nappe

Cet exemple traite de la stabilité d'une digue pour plusieurs régimes de conditions hydrauliques : nappe au repos, vidange rapide et vidange lente. Nous définirons une phase pour chacun de ces régimes hydrauliques.

Les éléments suivants seront importés automatiquement du modèle Plaxis 2D :

- La géométrie et les caractéristiques de sols ;
- Les pressions interstitielles des phases 2 et 3.

Le fichier Plaxis 2D à utiliser est fourni avec les exemples lors de l'installation de Talren.

Figure 48. Coupe de calcul de la digue

D.2.1 Importation des données du fichier Plaxis 2D

Plutôt que de définir manuellement la géométrie et les caractéristiques des sols (voir la variante proposée au chapitre suivant), il est possible d'ouvrir le fichier Plaxis correspondant à la même coupe. Procéder de la manière suivante :

- Sélectionner le menu **Fichier** 🗐 puis l'option **Ouvrir** ou cliquer sur l'icône 📴 de la barre de boutons.
- Choisir les « fichiers du type » Plaxis 2D, puis sélectionner le fichier Plaxis souhaité : choisir le fichier vidange_tal_fin.p2D.
- Le modèle Plaxis est alors converti en fichier Talren (pour les données compatibles), et un avertissement est affiché pour indiquer les limites de la conversion.

Import P	laxis 2010 X
\bigcirc	Les éléments de structure (poutres, ancrages, interfaces, tunnels), les surcharges surfaciques inclinées avec les angles différents, les éventuels déplacements imposés et le phasage n'ont volontairement pas été importés. Ont été importés :
	 la géométrie définie dans le module input de Plaxis ; les caractéristiques de sol compatibles entre Plaxis et Talren ; les surcharges surfaciques (avec des angles gauche et droit identiques) et linéaires, telles qu'elles sont définies dans le module input de Plaxis (sans tenir compte des modifications des surcharges ni des coefficients MioadA et MioadB éventuellement appliqués durant le phasage); les butons;
	Merci de vérifier et compléter les données importées.
	ОК

- La géométrie a été importée correctement.
- En accédant aux propriétés des couches de sol, on peut vérifier que celles-ci ont également été importées.
- En revanche, il est nécessaire de compléter les propriétés générales du projet (sauf les dimensions du modèle, automatiquement définies en fonction de la géométrie du modèle importé) : dans le volet de navigation en haut à droite de l'écran, cliquer sur l'item principal **Projet** de l'arborescence du projet et compléter les données conformément aux Figure 48 et Figure 49.

Le chapitre D.2.2 détaille une variante à cette étape 1, dans le cas où l'utilisateur souhaite définir son modèle directement sous Talren v5.

Passer ensuite directement au chapitre D.2.3 pour la suite

D.2.2 Variante : définition du modèle dans Talren v5

Définition générale du projet

- Sélectionner l'item **Fichier** I puis l'option **Nouveau** ou cliquer sur l'icône de la barre de boutons « Raccourcis ».
- Sélectionner un répertoire d'enregistrement du projet et donner un nom au fichier du projet (extension .t5p).
- Cliquer sur le menu principal **Projet** de l'arborescence et compléter le volet comme indiqué sur la Figure 49.
- Pour définir les pondérations par défaut, cliquer sur le bouton Définir >> puis cliquer sur le bouton
 Base de données tout en bas du volet. Ensuite sélectionner le jeu de pondérations comme indiqué sur la Figure 49, l'importer dans le projet et le compléter.

terrasol

Figure 49. Description générale du projet (à gauche) et définition du jeu de coefficients partiels (à droite)

<u>Nota important</u> : ces valeurs de coefficients partiels ne constituent en aucun cas un exemple ou une référence à réutiliser. Il faut définir des valeurs issues des normes ou recommandations adaptées au projet traité.

Définition de la géométrie

Les limites du modèle et les coordonnées des points de la géométrie sont conformes à la Figure 50. Pour définir cette géométrie, utiliser l'une des 3 méthodes suivantes : dessin à la souris, saisie des coordonnées directement dans l'écran principal, ou utilisation du volet des propriétés. Consulter l'exemple 1 pour le détail des manipulations permettant la définition de la géométrie.

Figure 50. Géométrie de la coupe : points (à gauche) et segments (à droite)

Définition des caractéristiques de sol

Deux couches de sol sont à définir. Leurs caractéristiques sont données dans le Tableau 3 :

Couche de sol	γ (kN/m³)	φ (°)	C (kPa)
1 (sup.)	18	30	10
2 (inf.)	22	35	1

Pour définir ces caractéristiques, sélectionner l'item **Caractéristiques des sols** de l'arborescence du projet. Cliquer sur le bouton **Créer nouvelle couche de sol** +, puis compléter les données pour la 1^{ère} couche. Cliquer à nouveau sur **Créer nouvelle couche de sol** tune couche de sol tune couche de sol sol a l'autre, cliquer sur le libellé de la couche dans la liste à gauche de la boîte de dialogue.

Figure 51. Caractéristiques de chaque couche de sol : couche supérieure (à gauche) et couche inférieure (à droite)

Pour attribuer ces caractéristiques aux zones de sol, procéder par exemple par glisserdéposer (« drag&drop ») depuis la liste à gauche du volet de propriétés. La couche de sol 1 correspond à la couche supérieure, et la couche de sol 2 correspond à la couche inférieure.

D.2.3 Définition de la 1^{ère} phase (nappe au repos)

- Si vous avez créé la géométrie directement dans Talren v5, double-cliquer sur le menu Ajouter une nouvelle phase pour créer la première phase.
- Si vous avez importé le fichier Plaxis, la 1^{ère} phase a déjà été créée automatiquement (phase initiale). Sélectionner cette phase initiale dans l'arborescence.

Pour cette 1^{ère} phase, on prend en compte le niveau de nappe au repos à la cote +6 m, aussi bien dans le terrain que dans la retenue. Cette nappe au repos sera à définir comme une **nappe phréatique à la cote +6 m**, pour cela :

- Dans le volet Propriétés de la phase

 , accéder au menu déroulant Conditions hydrauliques et choisir l'option Nappe phréatique, puis cliquer sur le bouton
 Définir

 du Toit de la nappe.
- Dans le nouveau volet de propriétés, le toit de la nappe doit être défini par une succession de points. 2 méthodes sont disponibles :
 - Cliquer sur le bouton Ajouter un élément à la liste pour insérer les points définissant le toit de la nappe et compléter manuellement les coordonnées de chaque point :

N°	X (m)	Y (m)	Angle (°)
1	-10.0	+6.0	0
2	+22.0	+6.0	0

 Cliquer sur le bouton Dessine la nappe phréatique de la barre des outils, puis cliquer à la position des 2 points définissant le toit de la nappe.

Le volet de propriétés complété est illustré sur la Figure 52.

Valider cette saisie en cliquant sur le bouton

 La nappe définie est représentée sur la coupe du projet : à la nappe phréatique vient se superposer automatiquement la nappe extérieure pour la partie externe au talus. La nappe extérieure apparaît en trait plus épais que la nappe phréatique à l'intérieur du terrain et avec des hachures bleues.

Figure 52. Représentation des conditions hydrauliques de la phase 1 (nappe phréatique et nappe extérieure)

Définition de la situation 1

Créer une situation en double-cliquant sur le menu **Ajouter une nouvelle situation** ou sur le bouton

Il convient ensuite de définir ses propriétés, notamment : pondérations partielles et surfaces de rupture, dans le volet **Propriétés de la situation** 25%. Compléter le volet de propriétés selon les indications suivantes (Figure 53 et Figure 54) :

- <u>Méthode de calcul</u> : **Bishop** (option choisie par défaut dans la description générale).
- <u>Pondérations partielles</u> : **Méthode traditionnelle / Situation définitive** (option choisie par défaut dans la description générale).
- <u>Sismique</u> : nous n'allons pas définir de conditions sismiques pour cette situation.
- <u>Surfaces de rupture</u> : nous allons choisir par exemple des surfaces de rupture circulaires passant en pied de talus, en recherche automatique. Sélectionner Circulaire automatique et puis cliquer sur le bouton Définir S.

Le point de passage imposé peut être sélectionné sur le dessin après avoir cliqué sur le bouton *of* du volet Figure 54.

La valeur **Abscisse émergence limite** égale à +12 m garantit que le logiciel ne recherchera pas les cercles dont le point d'émergence « à droite » a une abscisse inférieure à x = +12 m. Valider en cliquant sur le bouton Retour.

Propriétés de la situation				
Nom	1			
Méthode de calcul	Bishop			~
Jeu de coef. de sécurité	Traditionn	el/Sit. définitive		~
		Voir 🔄		
Surface de rupture	Circulaire	automatique		~
	Circulaire	Définir 🛏		
		Delinii 🚽		
Nombre de tranches			100	
Seisme	ah/g		0,000	
	av/g		0,000	
Conditions de passage	(0)	Définir 🛬		
Etude de sensibilité ou de risque		Définir 🔄		

Retour S	Surface de rupture	e automatique				
Nombre de décou	pages		10			
ncrément sur le r	ayon (m)		0,500			
Abs. émerg. limite		12,000	1			
lype de recherch	Point de p	Point de passage imposé				
	X (m)	12,000	Y (m)		0,000	Ì

Figure 54. Définition des surfaces de rupture pour la 1^{ère} situation de la 1^{ère} phase

Calcul et résultats pour la 1^{ère} situation de la 1^{ère} phase

Pour effectuer le calcul de cette situation, cliquer sur le bouton **Calculer la situation courante Calculer a** dans les « Propriétés de la situation » ou bien cliquer sur le bouton **Calculer la situation courante a** de la barre de boutons « Calcul ».

Le calcul s'effectue puis le résultat s'affiche (Figure 55) : la surface dessinée par défaut est celle qui correspond à la valeur minimale retrouvée pour le coefficient de sécurité.

Figure 55. Résultat pour la 1^{ère} situation de la 1^{ère} phase

D.2.4 Définition de la 2^{ème} phase (vidange rapide)

Cette 2^{ème} phase consiste à étudier la stabilité de la digue dans le cas d'une vidange à court terme (vidange rapide, le calcul Plaxis est réalisé en conditions « non drainées »).

- Double-cliquer sur le menu **Ajouter une phase** ou sur le bouton Q Ajouter une nouvelle phase. Par défaut, la phase ajoutée reprend la configuration de la phase précédente, notamment la nappe phréatique.
- Dans le volet Propriétés de la phase, accéder aux Conditions hydrauliques et au lieu de l'option « nappe phréatique », sélectionner « Maillage triangulaire de pressions interstitielles », puis cliquer sur le bouton Choisir un fichier Plaxis
 Choisir R. de l'option Importer maillage Plaxis (Figure 56).

Propriétés de la phase	
Nom	Vidange rapide
Conditions hydrauliques	Maillage triangulaire de pressions in 🗸
Découpage	5
Noeuds et triangles	Définir 👒
Importer maillage Plaxis	Choisir P.
Nappe extérieure manuelle	Définir 😒
📄 ru par couche	Définir 😒
Enveloppe manuelle	Définir 😒
Multiplicateur par surcharge	Définir 😒
Assistant poussées/butées	Définir 😒

🔽 Importer un maillage Plaxis 🛛 🗙						
Depuis Plaxis v8, v9 ou 2D Depuis Plaxis AE						
Fichier .plx ou p2D						
les et tutoriels\Exemples\Tutoriels\ptx 2d\PLX 2D\vidange_tal_fin.P2D	1					
Fichier .xxx						
Is\Exemples\Tutoriels\plx 2d\PLX 2D\vidange_tal_fin.P2DAT\data.103						
Ok Annuler						

Figure 56. Conditions hydrauliques de la 2^{ème} phase

Cliquer sur le bouton [1] et choisir le fichier "vidange tal fin.P2D", puis cliquer sur • le bouton [2] pour choisir le pas de calcul à importer : Step n° 103 (cf. Figure 57 et Figure 58).

🔽 Importer un mailla	Umporter un maillage Plaxis							
Répertoire actuel :	:\Users\Documents\Logiciels Terrasol\Talren\Talren v5\Exemples et tutoriels\Exemples\Tutoriels\pix 2d\PLX 2D							
G Dossier parent	vidange_tal_fin.P2DAT							
Créer un répertoire								
Desktop								
Mes documents								
Ce PC								
Nom du fichier : vidang	e_tal_fin.P2D							
Fichiers de type : Fich	er PLAXIS (.pk ou .p2D)	~	Ouvrir	Annuler				

Figure 57. Choix du fichier Plaxis à utiliser

Kan Importer les press	ions interstitielles u de Plaxis		×
Répertoire actuel :	E:\Users\Documents\Logiciels Terraso\Talren\Talren v5\Exemples et tutoriels\Exemples\Tutoriels\ptx 2d\PLX 2D\vidange_tal_fin.p2dat		
G Dossier parent	data.000 (modifié le : 4 oct. 2013 18:31:06 taile : 352960 octet(s)) data.001 (modifié le : 4 oct. 2013 18:02:26 taile : 105540 octet(s)) data.002 (modifié le : 4 oct. 2013 18:02:26 taile : 105540 octet(s)) data.002 (modifié le : 4 oct. 2013 18:02:26 taile : 546788 octet(s)) data.002 (modifié le : 4 oct. 2013 18:02:26 taile : 546788 octet(s))		
Créer un répertoire	data.062 (modifié le : 4 oct. 2013 18:11:28 taille : 601968 octet(s)) data.092 (modifié le : 4 oct. 2013 18:11:28 taille : 586752 octet(s)) data.103 (modifié le : 4 oct. 2013 18:11:26 taille : 634526 octet(s)) data.104 (modifié le : 4 oct. 2013 18:11:26 taille : 634526 octet(s))		
Desktop			
Mes documents			
Ce PC			
Nom du fichier : data.	03		
Fichiers de type : Fic	ier de sortie PLAXIS (.000, .0000,)	✓ Ouvrir	Annuler

Figure 58. Choix du pas de calcul (Step) pour l'importation des pressions interstitielles

Pour visualiser les points et triangles du maillage de pressions ainsi que les valeurs des pressions interstitielles, cliquer sur le bouton de l'option **Nœuds et triangles**, puis utiliser les onglets **Nœuds** et **Triangles**. Pour information, le maillage importé dans notre cas comporte 365 nœuds et 647 triangles. Valider cette boîte de dialogue en cliquant sur le bouton **Retour**.

Propriétés ■	de la phase ———			_	□ Propriétés de la phas	e		
Reto	our Noeuds et triand	ales			Retour Noe	uds et triangles		
		-				-		
Noeuds	Triangles Propriétés	d'affichage			Noeuds Triangles	Propriétés d'affic	chage	
					Tria	noles		*
			~			ingico		· · · · · · · · · · · · · · · · · · ·
N°	X (m)	Y (m)	u (kPa)		N°	Noeud 1	Noeud 2	Noeud 3
2	22,000	-5,000	98,540		1	1	2	3
3	20,933	-6,000	108,575		2	2	4	5
4	22,000	-4,000	88,493		3	4	6	7
5	21,163	-4,146	89,977		4	8	9	10
6	22,000	-3,000	53,355		5	9	11	12
7	20,933	-3,000	53,334		6	11	13	12
8	-6,800	-6,000	118,451		7	13	14	15
9	-5,733	-6,000	117,936		8	16	17	18
10	-6,897	-5,311	111,604		9	17	19	20
11	-4,667	-6,000	117,421		10	19	21	20
12	-4,656	-5,187	109,288		11	21	22	23
13	-3,600	-6,000	116,908		12	22	24	23
14	-2,533	-6,000	116,395		13	24	25	26
15	-2,758	-5,231	108,814		14	25	27	26
16	-1,467	-6,000	115,885		15	27	28	29
17	-0,400	-6,000	115,377		16	28	30	29
18	-1,591	-5,143	107,372		17	30	31	32
19	0,667	-6,000	114,872		18	33	34	35
20	0,646	-5,370	108,585		19	36	37	38
21	1,733	-6,000	114,372		20	37	39	40
22	2,800	-6,000	113,876		21	39	41	42
23	2,693	-5,299	106,914 💊		22	5	4	7 ~

Figure 59. Tableaux de visualisation des nœuds et des triangles d'un maillage de pressions interstitielles

Après définition du maillage de pressions interstitielles, il faut compléter les conditions hydrauliques par la définition de la **nappe extérieure** : celle-ci se trouve maintenant à son niveau de vidange, soit à la cote **+2.0 m**. Cette fois, la nappe extérieure ne peut pas être déterminée automatiquement à partir d'une nappe phréatique.

Dans le volet de propriétés des conditions hydrauliques, cocher la case **Nappe extérieure manuelle**, puis cliquer sur le bouton dessin sur la coupe, soit par la saisie des coordonnées des points de la nappe dans le tableau du volet des propriétés à droite (Figure 60).

Propriétés de la phase		
Nom	Vidange rapide	
Conditions hydrauliques	Maillage triangula	aire de pressions in 💊
Découpage		5
Noeuds et triangles	Définir 🛬	
Importer maillage Plaxis	Choisir 🄜	
Vappe extérieure manuelle	Définir 🔄	
u par couche	Définir 👒	
Enveloppe manuelle	Definir 🛬	
Multiplicateur par surcharge	Définir 🔄	
Assistant poussées/butées	Définir 🔄	

Figure 60. Définition de la nappe extérieure de la 2^{ème} phase

Les conditions hydrauliques sont représentées sur la coupe (Figure 61).

Figure 61. Représentation des conditions hydrauliques de la 2^{ème} phase (maillage triangulaire de pressions interstitielles et nappe extérieure)

Définition de la situation 1

Plutôt que de redéfinir les paramètres pour cette situation 1 de la 2^{eme} phase, nous allons réutiliser les paramètres définis pour la situation de la 1^{eme} phase (les paramètres de recherche sont les mêmes). Pour cela, cliquer sur **Ajouter une nouvelle situation** dans la 2^{eme} phase, puis :

- Cliquer sur le bouton Kajouter une nouvelle situation avec l'assistant...
- Sélectionner dans la nouvelle fenêtre :
 - L'option Copie de la situation « Situation 1 » (« Phase 1 ») dans le menu déroulant du Contenu de la situation.
 - L'option A la fin, dans le menu déroulant du « Futur emplacement ».

🔽 Ajouter une nouvelle situation						
Contenu de la situation : Copie de la situation "1" (Phase "Nappe au repos")						
Futur emplacement : À la fin						
	Ok Annuler					

Figure 62. Fenêtre pour ajouter une nouvelle situation

Valider en cliquant sur le bouton
 Ok

Calcul et résultats pour la situation 1

Il ne reste plus qu'à calculer la situation 1 de la phase 2. Le résultat obtenu est indiqué sur la Figure 63.

Figure 63. Résultat pour la situation 1 de la 2^{ème} phase

D.2.5 Définition de la 3^{ème} phase (vidange lente)

La 3^{ème} phase consiste à étudier la stabilité de la digue en situation de vidange à long terme (vidange lente, calcul Plaxis réalisé en conditions "drainées").

- Cliquer avec le bouton droit de la souris sur la 2^{ème} phase et choisir l'option
 Dupliquer cette phase
 La 3^{ème} phase est alors créée (avec la même situation 1 que celle de la 2^{ème} phase, car les situations sont dupliquées avec les phases).
- Modifier les conditions hydrauliques de la 3^{ème} phase en procédant de manière analogue à la 2^{ème} phase : cliquer sur le bouton Choisir un fichier Plaxis de l'option Importer maillage Plaxis. Choisir le même fichier "vidange tal fin.plx" que pour la phase précédente, puis sélectionner cette fois le Step n° 115, correspondant au calcul de vidange rapide réalisé sur Plaxis.
- Valider et confirmer que vous souhaitez supprimer le maillage existant (pour le remplacer par le nouveau maillage choisi).
- Le maillage importé est géométriquement identique au précédent (puisqu'il s'agit du même fichier et donc du même maillage Plaxis), mais les pressions importées sont différentes.
- D'autre part, la nappe extérieure reste inchangée par rapport à la phase précédente (niveau de vidange à **+2,0 m** également).

Définition, calcul et résultats de la situation 1

Il ne reste plus qu'à calculer la situation 1 de cette 3^{ème} phase (en se plaçant sur la situation 1 pour pouvoir lancer le calcul).

Le résultat obtenu est indiqué sur la Figure 64.

Figure 64. Résultat pour la situation 1 de la phase 3

D.2.6 Synthèse des résultats obtenus

Les 3 calculs effectués (tous avec des coefficients partiels unitaires) ont donné les résultats suivants :

Conditions hydrauliques	Valeurs du coefficient de sécurité obtenu
Nappe permanente	F _{min} = 2,05
Vidange rapide	F _{min} = 1,25
Vidange lente	$F_{min} = 1,12$

Tableau 4. Synthèse des résultats

D.3 Reprise des 2 premiers tutoriels avec la méthode du calcul à la rupture

Ce chapitre a pour but de reprendre les 2 exemples précédents avec la méthode du calcul à la rupture, afin de familiariser l'utilisateur avec cette méthode de calcul qui ne nécessite pas d'hypothèses supplémentaires et qui permet de fiabiliser les résultats obtenus.

L'objectif est de comparer les résultats obtenus avec les méthodes Bishop/perturbations d'une part et avec la méthode du calcul à la rupture d'autre part.

D.3.1 Tutoriel 1 : Mur cloué (calcul à la rupture)

Nous effectuerons la comparaison uniquement pour la dernière phase (phase permanente). La situation « de référence » sera la 1^{ère} situation de cette phase (calcul selon Clouterre / combinaison fondamentale / ouvrage courant avec recherche automatique) : le calcul avec la méthode de Bishop donnait pour cette situation $F_{min,Bishop} = 1,03$.

- Après avoir rouvert le fichier tutorial1.t5p, sélectionner la situation 1 de la dernière phase.
- Cliquer sur son libellé avec le bouton droit de la souris et sélectionner Dupliquer
- Modifier les propriétés de la nouvelle situation ainsi créée, conformément aux deux figures suivantes, pour effectuer un calcul suivant la méthode du calcul à la rupture.

Propriétés de la situation						
Nom	Calcul rup	ture				
Méthode de calcul	Calcul à la	Calcul à la rupture				
Jeu de coef. de sécurité	Clouterre	fondamental/couran	t 🗸			
		Voir 🛬				
XF		1,000				
Surface de rupture	Spirales lo	garithmiques				
		Définir 🍉				
Discrétisation		100				
Séisme	ah/g	0,000				
0	av/g	0,000				
Conditions de passage	(0)	Définir 🔄				
Etude de sensibilité ou de risque		Définir 🛬				
Calculer la situation courante		Calculer 🔀				
Calculer la phase		Calculer 💽				
Calculer le projet		Calculer 🌉				
Accéder aux résultats		Accéder				
Supprimer les résultats		Supprimer 🗽				
			[serial = 12]			

Figure 65. Tutoriel 1- Paramètres de la situation 4 de la phase 4 (calcul à la rupture)

Il convient de commencer par un calcul avec XF = 1,0, puis en fonction du résultat obtenu pour F_{min} , modifier la valeur de XF jusqu'à obtenir F_{min} = 1,0 (équilibre de moments).

Retour Su	Retour Surface de rupture spirale									
'intervalle d'entrée										
oint gauche	X (m)	-15,000	Y (m)	15,000	Æ					
oint droit	X (m)	-12,000	Y (m)	15,000	Þ					
lb découpages		10								
'intervalle de sortie	;									
oint gauche	X (m)	0,000	Y (m)	2,000	бит					
oint droit	X (m)	0,000	Y (m)	2,000	ob					
lb découpages		0								
pirales	à concav	vité vers le hau	ut	~						
xploration	par pas (de 2.5°		~						
Précision (m)		0,010								

Figure 66. Tutoriel 1 - Paramètres de la situation 4 de la phase 4 (définition des spirales logarithmiques)

Figure 67. Tutoriel 1 – Résultat du calcul de la situation 4 de la phase 4 (calcul à la rupture)

Le coefficient XF permettant d'obtenir $F_{min} \approx 1,0$ est $XF_{rupture} = 1,09$. C'est ce coefficient XF qui peut être comparé au coefficient de sécurité global F calculé selon la méthode de Bishop (cf. Partie C du manuel : Notice technique).

Conclusion pour le tutorial 1 : XF_{rupture} = 1,09 et F_{min,Bishop} = 1,03

D.3.2 Tutoriel 2 : Stabilité de pente sous nappe (calcul à la rupture)

Nous effectuerons la comparaison pour chacune des 3 phases.

La situation « de référence » sera la 1^{ère} et unique situation de chaque phase.

- Après avoir rouvert le fichier tutorial2.t5p, sélectionner la situation 1 de la 1^{ère} phase.
- Cliquer sur son libellé avec le bouton droit de la souris et sélectionner Dupliquer
- Modifier les propriétés de la nouvelle situation ainsi créée pour effectuer un calcul suivant la méthode du calcul à la rupture (paramètres fournis sur la Figure 68).
- Après avoir effectué le calcul, copier/coller cette situation dans les autres phases pour effectuer des calculs avec les différentes conditions hydrauliques définies dans chaque phase. Modifier les paramètres des spirales logarithmiques si nécessaire.

Propriétés de la situation									
Nom	2								
Méthode de calcul	Méthode de calcul Calcul à la rupture		~						
Jeu de coef. de sécurité	Méthode	traditionnelle Sit. de	éfinitive 🗸 🗸						
		Voir 🔄							
XF		1,97	00						
Surface de rupture	Spirales I	ogarithmiques							
		Définir 🔄							
				Proprietes de la	situation —				
Discrétisation		1	00	Retour	Surface	le rupture spirale			
				L'intervalle d'ei	ntrée				
Séisme	ah/g	0,0	00	Point gauche	Х	m) -7,000	Y (m)	8,000	4 1N
	av/g	0,0	00	Point droit	X	(m) -1,000	Y (m)	8,000	is a second seco
				Nb découpages	s	5			
Conditions de passage	(0)	Définir 🛬							
				L'intervalle de	sortie				_
Etude de sensibilité ou de risque		Définir 🔄		Point gauche	X	m) 11,500	Y (m)	0,333	AUT
				Point droit	X	m) 15,000	Y (m)	0,000	e interestadores e como
Calculer la situation courante		Calculer 🕵		Nb découpages	S	5			
Calculer la phase		Calculer 🔯							
Calculer le projet		Calculer 🍓		Spirales	à	concavité vers le ha	ut	~	
Accéder aux résultats		Accéder 🔀		Exploration	p	ar pas de 10°		~	
				Précision (m)		0,010			
Supprimer les résultats		Supprimer 🗽							
			[serial = 2]						
				Nombre de sui	rfaces susc	eptibles d'être calcu	lées : 68	4	

Figure 68. Tutorial 2 – Définition de la situation 2 de la phase 1 (calcul à la rupture) paramètres de la situation (à gauche) et définition des spirales logarithmiques (à droite)

Propriétés de la situation								
Nom	Vidage rapide							
Méthode de calcul	Calcul à la rupture							
Jeu de coef. de sécurité	Traditionnel/Sit. définitive							
	Voir 🛬							
XF		1,2250						
			_					
Surface de rupture	Spirales logarithmiques							
	Définir 🍉							
			- Propriétés de la situation					
Discrétisation		100	Retour Surface	e de rupture s	spirale			
			L'intervalle d'entrée					
Séisme	ab/a	0.000	Point gauche	X (m)	-3,000	Y (m)	8,000	<u> </u>
	awa	0,000	Point droit	X (m)	0,000	Y (m)	8,000	N
	av/g	0,000	Nb découpages		5			
Conditions de passage	(0) Definir 🌱		L'intervalle de sortie					
			Point gauche	X (m)	11,500	Y (m)	0,333 🧉	<u>fur</u>
Etude de sensibilité ou de risque	Définir 🛬		Point droit	X (m)	13,000	Y (m)	0,000 2	uipe -
			Nb découpages		5			
Calculer la situation courante	Calculer	<i>k</i>						
Calculer la phase	Calculer	0	Spirales	à concav	ité vers le haut		~	
Calculer le projet	Calculer 4		Exploration	par pas o	le 10°		~	
Accéder aux résultats	Accéder	8	Précision (m)		0,010			
			-					
Supprimer les résultats	Supprimer	20						
		I sorial = 11	Nombre de surfaces sus	sceptibles d'êtr	re calculées : 684			
		[Serial = 12	1					

Figure 69. Tutorial 2 – Définition de la situation 2 de la phase 2 (calcul à la rupture) paramètres de la situation (à gauche) et définition des spirales logarithmiques (à droite)

Figure 70. Tutorial 2 – Définition de la situation 2 de la phase 3 (calcul à la rupture) paramètres de la situation (à gauche) et définition des spirales logarithmiques (à droite)

Les résultats pour les 3 phases de calcul sont fournis sur les figures suivantes et synthétisés dans le Tableau 5.

Figure 71. Tutorial 2 / Calcul de la situation 2 de la phase 1 (calcul à la rupture, nappe permanente)

Figure 72. Tutorial 2 / Calcul de la situation 2 de la phase 2 (calcul à la rupture, vidange rapide)

Figure 73. Tutorial 2 / Calcul de la situation 2 de la phase 3 (calcul à la rupture, vidange lente)

Conclusions sur le tutorial 2 :

Conditions hydrauliques	F _{Bishop}	XF Calcul à la rupture
Nappe permanente (phase 1)	F = 2,05	XF = 1,970
Vidange rapide (phase 2)	F = 1,25	XF = 1,225
Vidange lente (phase 3)	F = 1,12	XF = 1,155

Tableau 5. Synthèse des résultats du tutorial 2 : comparaison Bishop/Calcul à la rupture

D.3.3 Remarques sur la comparaison calcul à la rupture / calcul Bishop

Il est observé sur les cas particuliers présentés que constituent les tutoriels 1 et 2 que le calcul à la rupture conduit à un coefficient de sécurité XF qui demeure proche de celui obtenu par la méthode traditionnelle de Bishop.

L'écart est limité en pourcentage (quelques pourcents) et ne permet aucun classement systématique, le coefficient XF du calcul à la rupture étant tantôt supérieur, tantôt inférieur à celui de Bishop.

Comme souligné dans la notice théorique (Partie C de ce manuel), le calcul à la rupture détermine toujours et de manière rigoureuse une estimation par excès de la charge à la rupture réelle (et donc du coefficient de sécurité XF). A l'inverse, les hypothèses propres à la méthode de Bishop rendent indéterminée la position du résultat par rapport à la charge de rupture réelle.

Les écarts observés sur les exemples traités s'accordent avec ces éléments.

D.4 Tutoriel 3 : Stabilité d'une pente naturelle avec des pieux -Surfaces de rupture polygonales (non circulaires)

Ce tutoriel traite la stabilité d'une pente naturelle stabilisée par des pieux avec prise en compte de surfaces de rupture polygonales (surfaces « quelconques »). Nous étudierons la stabilité du projet en deux étapes :

- Etape 1 : pente naturelle non renforcée (sans prendre en compte les pieux).
- Etape 2 : pente naturelle renforcée par des pieux pour apprécier leur apport.

Les deux étapes seront examinées pour plusieurs géométries de surfaces de rupture. Pour le détail des manipulations nécessaires de l'interface, merci de vous référer au 1^{er} exemple.

D.4.1 Définition des propriétés du projet

- Lancer Talren en utilisant le menu **Démarrer** de Windows ou en cliquant sur l'icône située sur le bureau Windows ;
- Sélectionner l'item Fichier el puis l'option Nouveau projet... ou cliquer sur l'icône
 de la barre de boutons « Raccourcis ».
- Sélectionner un répertoire d'enregistrement du projet et donner un nom au fichier du projet (d'extension .t5p).
- Compléter la partie **Propriétés du projet** dans le volet droit de la fenêtre principale avec les informations comme indiqué sur la Figure 74.

Propriétés du projet					
Numéro d'affaire	19870DEV				
Titre du calcul	Stabilisation d'une pente instable				
Lieu					
Commentaires	Renforcement par pieux verticaux				
Ymin (m)	200.000				
Xmar (m)	-200,000				
And (iii)	30,000				
Système d'unités	kN, kPa, kN/m3 🗸				
Y _w (kN/m ³)	10,0				
Méthode de calcul*	Perturbations 🗸				
Exposant de tga*	1				
Jeu de coef. de sécurité*	Clouterre Fondamental / Ouvrage courant 🗸				
* par défaut	Définir 🧺				
Fond de plan	Définir 🤟				
Qiamitria					
Curcharges					
Penforcemente					
Remorcements					

Figure 74. Description générale

<u>Pondérations par défaut</u>: cliquer sur le bouton <u>Définir</u> puis cliquer sur le bouton
 <u>Base de données</u> [1] tout en bas du volet de propriétés à droite. Sélectionner le jeu de pondérations « Clouterre fondamental/courant » dans la liste déroulante [2] et cliquer sur le bouton <u>Gemporter dans le projet</u> [3]. Compléter le jeu de pondérations [4] par des valeurs unitaires. Puis valider par le bouton <u>Gemetrer</u> [5].

Retour J	eux de coefficients de secui	110		Trophotos da pro			
		no		Retour .	Jeux de coefficients de sécu	ırité	
🥞 Jeux de co	pefficients de sécurité du projet		🛨 🔟	🥞 Jeux de c	oefficients de sécurité du proje	t	
						3	
					importer da	ans le projet	
	«Veuillez créer un jeu de co	efficients de sécurité>		Nom	Eurocode - Fondamental - Ou	ivrage courant	
				Г _{min}	1,000	F _{gsl,tirant,ab}	1,400
				Г _{s1}	1,000	Γ _{gsl,tirant,es}	1,000
				Г _{s1}	1,000	Г _{gsl,bande}	1,100 🛞
				Г	1,250	Г _{рі}	1,400
				Г.	1,250	F _{a,clou}	
				Г _{си}	1,400	F _{a.tirant}	
				го	1,300	F _{a.bande}	1,250
				F _{osl clou ab}		F _{buton}	
				F _{cel clou es}	1.100	Γ_2	1,100
				qai,oou,ea		20	
				Eurocode - Fon	damental - Ouvrage courant		2
				Eurocode - Fon Eurocode - Sist	damental - Ouvrage sensible nique		
	1			Unitaire		2	
				Traditionne//Sit.	provisoire définitive	2	
🤳 Base de de	onnées (13)			Clouterre fonda	mental/courant		
Clouterre fondam	ental/courant			Clouterre tonda	mental/sensible damental - Ouvrage courant		~
16:43	3:37 : Jeu de coefficients de sécu	urité supprimé					
Propriétés du proj	et			Propriétés du pro	jet		
🔄 Retour J	leux de coefficients de sécu	urité		🔄 Retour	Jeux de coefficients de séci	urité	
🥵 Jeux de ce							
Ŭ,	oefficients de sécurité du proje	t (1)	+ 1	Jeux de c	coefficients de sécurité du proje	t (1)	+ 1
Clouterre fondar	oefficients de sécurité du proje mental/courant	t (1)	± 1	L Seux de c	coefficients de sécurité du proje mental/courant	t (1)	+ 1
Clouterre fondar	oefficients de sécurité du proje nental/courant	t (1)	+ 1	Level de Clouterre fonda	coefficients de sécurité du proje mental/courant	t (1)	+ 1
Clouterre fondar	oefficients de sécurité du proje nental/courant	t (1)	+ 1	Clouterre fonda	coefficients de sécurité du proje mental/courant	t (1)	± 1
Clouterre fondar	oefficients de sécurité du proje mental/courant Clouterre fondamental/coura	t (1)	+ 1	Clouterre fonda	coefficients de sécurité du proje mental/courant Clouterre fondamental/coura	t (1)	+ 1
Clouterre fondar Nom F _{min}	oefficients de sécurité du proje mental/courant Clouterre fondamental/coura 1,000	t (1) f (1)		Clouterre fonda	oefficients de sécurité du proje mental/courant Clouterre fondamental/coura 1,000	t (1) nt r _{qsl,tirant,ab}	1,000
Clouterre fondar Nom F _{min} F _{s1}	cefficients de sécurité du proje mental/courant Clouterre fondamental/coura 1,000 1,050 4	t (1)		Clouterre fonde	coefficients de sécurité du proje mental/courant Clouterre fondamental/coura 1,000 1,050 5	t (1) rt rqsl,tirant,ab rqsl,tirant,es	1,000 1,000
Clouterre fondar Nom F _{min} F _{s1}	cefficients de sécurité du proje mental/courant Clouterre fondamental/coura 1,000 1,050 0,950	t (1)		Clouterre fonda Nom Γ _{min} Γ _{s1}	Clouterre fondamental/coura 1,000 1,050 0,950	t (1) rt rqsl,tirant,ab rqsl,tirant,es rqsl,tirant,es	1,000 1,000
Clouterre fonder Nom F _{min} F _{s1} F _{s1} F _{\$1}	Clouterre fondamental/coura 1,000 0,950 1,200	t (1)	1,900	Clouterre fonda Nom Γ _{s1} Γ _g	Clouterre fondamental/coura 1,000 1,050 0,950 1,200	t (1) rqsl, tirant, ab rqsl, tirant, es rqsl, bande rpl	1,000 1,000 1,900
Clouterre fondar Nom F _{min} F _{s1} F _{s1} F _o	Clouterre fondamental/coura 1,000 1,050 1,200 1,500	t (1)	1,900	Clouterre fonda	Clouterre fondamental/coura 1,000 1,050 1,200 1,500	t (1) r (1) r (qsl, tirant, ab r (qsl, tirant, es r (qsl, bande r (p) r (a, olou	1,000 1,000 1,000 1,900 1,150
Clouterre fondar Nom F _{min} F ₅₁ F ₆ F ₆	Clouterre fondamental/coura 1,000 1,050 1,200 1,300	t (1)	1,900 1,150	Clouterre fonda	Clouterre fondamental/coura 1,000 1,050 1,200 1,300	t (1) r (1) r (qsl,tirant,ab r (qsl,tirant,ab) r (qsl,tirant,ab r (qsl,tirant,ab) r (qsl,tirant,ab)	1,000 1,000 1,000 1,900 1,150 1,000
Clouterre fondar Nom 「min 「s1 「ç 「c 「ou	Clouterre fondamental/coura 1,000 1,050 1,200 1,300 1,330	t (1)	1,900 1,150	V Clouterre fonda Nom Γ _{s1} Γ _{s1} Γ _φ Γ _{c'} Γ _c Γ _c	Clouterre fondamental/courant 1,000 5 0,950 5 1,200 1,500 1,300 1,330	t (1) rt rqsl,tirant,ab rqsl,tirant,as rqsl,tirant,es rpl ra,clou ra,tirant ra,tirant ra,tirant	1,000 1,000 1,000 1,900 1,150 1,000 1,000
Clouterre fondar Nom F _{min} F _{s1} F ₆ F ₆ F ₆ F ₆ F ₆	Clouterre fondamental/coura 1,000 1,050 1,200 1,300 1,300 1,800	t (1)	1,900 1,150	V Clouterre fonda Nom Γ _{min} Γ _{s1} Γ _{s1} Γ _φ Γ _{c'} Γ _c Γ _c	Clouterre fondamental/courant 1,000 1,050 0,950 1,200 1,500 1,300 1,300 1,800	t (1) rt rdsl.tirant.ab rdsl.tirant.es rdsl.bande rdsl.bande rdsl.tirant rdsl.tirant rdsl.tirant rdsl.tirant rdsl.tirant rdsl.tirant	1,000 1,000 1,000 1,900 1,150 1,000 1,000
Clouterre fondar Nom Fmin Fs1 Fs Fc Fc Fcu Fcu Fcu Fcu Fcu Fcu Fcu Fcu	Clouterre fondamental/coura 1,000 1,050 1,200 1,300 1,300 1,300 1,800 1,400	t (1)	1,900	Clouterre fonda	Clouterre fondamental/courant 1,000 1,050 5 0,950 1,200 1,500 1,300 1,300 1,800 1,400	t (1) r (1) r (qsl, tirant, ab r (qsl, tirant, ab r (qsl, tirant, as r (qsl, bande r (pl r (a, clou) r (a, clou) r (a, bande r (buton r (a)	1,000 1,000 1,000 1,150 1,000 1,000 1,000 1,000
Clouterre fondar Nom Fmin Fs1 Fs Fc Fc Fcu Fcu Fqs1.clou.ab Fqs1.clou.ab	Clouterre fondamental/coura 1,000 1,050 1,200 1,500 1,300 1,300 1,800 1,400	t (1)	1,900 1,150 1,125	Clouterre fonda	Clouterre fondamental/coura 1,000 1,050 1,200 1,200 1,200 1,300 1,300 1,300 1,800 1,400	t (1) r (1) r (qsl, tirant, ab r (qsl, tirant, ab r (qsl, tirant, as r (qsl, bande r (p) r (a, clou) r (a, clou) r (a, bande r (buton r (s) r (s)	1,000 1,000 1,000 1,900 1,150 1,000 1,000 1,000 1,125
Clouterre fondar Nom Fmin Fs1 Fs5 Fc Fc Fcu Fcu Fcu Fcu Fcu Fcu Fcu Fcu F	Clouterre fondamental/coura 1,000 1,050 1,200 1,200 1,300 1,300 1,800 1,400	t (1)	1,900 1,150 1,125	Clouterre fonda	Clouterre fondamental/courant 1,000 1,050 0,950 1,200 1,500 1,300 1,300 1,800 1,400	t (1) r (1) r (qsl, tirant, ab r (qsl, tirant, ac r (qsl, tirant, ac r (qsl, tirant, ac) r (qsl, tirant) r (a, tirant)	1,000 1,000 1,000 1,900 1,150 1,000 1,000 1,000 1,125
Clouterre fondar Nom Fmin Fs1 Fs1 Fc Cou Fou Fou Fou Fast.clou.ab Fqst.clou.es	Clouterre fondamental/coura 1,000 1,050 1,200 1,200 1,500 1,300 1,300 1,400	t (1)	1,900 1,150 1,125	Clouterre fonda	Clouterre fondamental/courant 1,000 1,050 1,050 1,200 1,500 1,200 1,300 1,300 1,800 1,400	t (1) r (1) r (qsl, tirant, ab r (qsl, tirant, ab r (qsl, tirant, ab r (qsl, tirant, ab r (qsl, tirant) r (qsl, tirant, ab) r (qsl, tirant) r	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Clouterre fondar Nom 「min 「s1 「g 「c 「c 「c 「g 」 (gsl.clou.ab	Clouterre fondamental/coura 1,000 1,050 1,200 1,200 1,300 1,300 1,400	t (1)	1,900 1,150	Clouterre fonda	Clouterre fondamental/courant 1,000 1,050 1,050 1,200 1,300 1,300 1,800 1,400	t (1) r (1) r (qsl,tirant,ab r (qsl,tirant,ab r (qsl,tirant,ab r (qsl,tirant,ab r (qsl,tirant) r (qsl,tirant) r (qsl,tirant) r (qsl,tirant) r (qsl,tirant) r (qsl,tirant) r (qsl,tirant) r (qsl,tirant) r (qsl,tirant,ab) r (qsl,tirant) r (qsl,tira) r (qsl,tirant)	1,000 1,000 1,000 1,900 1,150 1,000 1,000 1,000 1,000 1,000
Clouterre fondar Nom Fs1 Fs1 Fc fc fcu fcu fcu fcu fcu fcu fcu fcu fcu	Clouterre fondamental/coura 1,000 1,050 1,200 1,500 1,300 1,300 1,400	t (1)	1,900 1,150 1,125	Clouterre fonda Clouterre fonda Fmin Fs1 Fs1 Fo Fo' Fo' Fou Fo fou Fo fou fou fou fou fou fou fou fou fou fo	Clouterre fondamental/courant 1,000 1,050 0,950 1,200 1,300 1,300 1,800 1,400	t (1) r (1) r (qsl,tirant,ab r (qsl,tirant,ab r (qsl,tirant,ab r (qsl,tirant,ab r (qsl,tirant) r (qsl,tirant,ab) r (qsl,tirant) r	1,000 1,000 1,000 1,900 1,150 1,000 1,000 1,000 1,000
Clouterre fondar Nom Fs1 Fs1 Fc Cou FQ Fqs1.clou.ab Fqs1.clou.ab	Clouterre fondamental/coura 1,000 1,050 1,200 1,300 1,300 1,300 1,300 1,400	t (1)	1,900 1,150 1,125	Clouterre fonda Clouterre fonda I Nom I I I I I I I I I I I I I I I I I I I	Clouterre fondamental/coura 1,000 1,050 5 0,950 1,200 1,300 1,300 1,300 1,400	t (1) t (1) r (qsl,tirant,ab r (qsl,tirant,as r (qsl,tirant,as r (qsl,tirant,as r (qsl,tirant,as r (qsl,tirant,as r (qsl,tirant,as) r (qsl,tirant) r (qsl,tir	1,000 1,000 1,000 1,900 1,150 1,000 1,000 1,000 1,000
Clouterre fondar Nom Fmin Fs1 Fs Fc Cou Fou Fou Fou Fou Fou Fou Fou Fou Fou F	Clouterre fondamental/coura 1,000 1,050 1,200 1,200 1,300 1,300 1,300 1,400 1,400	t (1)	1,900 1,150 1,125	Clouterre fonda	Clouterre fondamental/coura 1,000 1,050 1,200 1,200 1,300 1,300 1,300 1,300 1,400 1,400	t (1) t (1) r (gsl, tirant, ab r (gsl, tirant, es r (gsl, tirant) r (gsl, tirant r (gsl, tirant) r (gs	1,000 1,000 1,000 1,900 1,150 1,000 1,000 1,000 1,000
Clouterre fondar Nom Fmin Fs1 Fs Fc Cou Fou Fou Fou Fou Fou Fou Fou Fou Fou F	Clouterre fondamental/coura 1,000 1,050 1,200 1,200 1,300 1,300 1,300 1,300 1,400 1,400 1,400	t (1)	1,900 1,150 1,125	Sex de c Clouterre fonda Nom Fmin Fg1 Fg1 Fg2 F	Clouterre fondamental/coura 1,000 1,050 5 0,950 1,200 1,300 1,300 1,300 1,300 1,400 Lexporter vers la tonnées (13)	t (1) t (1) r (qsl,tirant,ab r (qsl,tirant r (qsl) t (1,000 1,000 1,000 1,900 1,150 1,000 1,000 1,000 1,000

Figure 75. Jeux de coefficients pondérateurs par défaut

Nota important : dans ce tutoriel, les coefficients de sécurité partiels relatifs aux tirants, bandes et butons ont été complétés par des valeurs unitaires pour pouvoir valider l'écran, mais ne seront pas utilisés lors du calcul (seuls ceux des clous seront utilisés). Les valeurs définies ne constituent donc en aucun cas un exemple ou une référence à réutiliser : il faut définir pour chaque étude des valeurs issues des normes ou recommandations adaptées au projet traité.

D.4.2 Définition de la géométrie du projet

Les limites du modèle et les coordonnées des points de la géométrie sont fournis sur la figure ci-dessous (hors renforcements, qui seront définis à posteriori).

Pour définir cette géométrie, utiliser l'une des 3 méthodes suivantes : dessin à la souris, saisie des coordonnées directement dans l'écran principal ou en utilisant le volet des propriétés. Consulter l'exemple 1 pour le détail des manipulations permettant la définition de la géométrie, si nécessaire.

Figure 76. géométrie du modèle

Figure 77. Géométrie du modèle : zoom sur la partie centrale

D.4.3 Définition des caractéristiques de sol

Couche	γ (kN/m³)	c (kPa)	φ (°)
Couche 1	19.0	0.0	25.0
Couche 2	19.0	0.0	13.0
Couche 3	19.0	0.0	10.0
Couche 4	20.0	20.0	35.0

Les caractéristiques des 4 couches de sol à définir sont fournies dans le tableau ci-dessous.

Tableau 6. Caractéristiques des sols

Pour définir ces caractéristiques, sélectionner l'item **Caractéristiques des sols** de l'arborescence du projet. Cliquer sur le bouton **Créer nouvelle couche de sol** , puis compléter les données pour la 1^{ère} couche. Cliquer à nouveau sur le même bouton pour ajouter puis définir les données pour les autres couches de sol. Pour passer d'une couche de sol à l'autre, cliquer sur le libellé de la couche dans la liste à gauche de la boîte de dialogue. La saisie pour la couche 4 est illustrée sur la figure suivante.

Figure 78. Caractéristiques de sol pour la couche 4

Pour attribuer ces couches aux zones de sol du modèle géométrique, procéder par exemple par glisser-déposer (« drag&drop ») depuis la liste à gauche du volet des propriétés. La position des couches est fournie sur la Figure 77).

D.4.4 Définition des renforcements

Le projet prévoit 3 files de pieux pour stabiliser la pente naturelle. Les pieux sont modélisés dans cet exemple par des clous travaillant au cisaillement uniquement.

Pour définir ces 3 files de clous, utiliser l'une des 3 méthodes décrites dans l'exemple 1. Les caractéristiques des clous sont définies dans le tableau ci-dessous.

Nom	X (m)	Y (m)	L (m)	Ang (°)	Eh (m)	Largeur de la base de diffusion L_b (m)	Angle de diffusion A _b (°)
Pieu 1	-62.0	22.0	16.0	90.0	2.4	1.0	20.0
Pieu 2	-59.6	21.75	16.0	90.0	2.4	1.0	20.0
Pieu 3	-57.2	21.5	16.0	90.0	2.4	1.0	20.0

Nom	Règle de calcul	TR donnée (kN)	Rsc calculée à partir de qs ?	Rayon équivalent du scellement Re (m)	Résistance au cisaillement imposée Rcis (kN)
Pieu 1	T_{cal},C_{imp}	0	Oui	1,0	540.0
Pieu 2	T_{cal},C_{imp}	0	Oui	1,0	540.0
Pieu 3	T_{cal},C_{imp}	0	Oui	1,0	540.0

Tableau 7. Caractéristiques des clous (modélisant les files de pieux)

Propriétés du projet-					
Retour Renforcements					
Clous (3) Tirants Bandes	Butons				
🍓 Clous et familles du proje	t (3)	+ -	s 😤 í 🋍	4	
Pieu 1				\sim	
Pieu 1				1	
Pieu 2					
Pieu 3					
Diffusion				ſ	
Largeur base (m)	1,000	Angle (°)	20,00		
Valeur de TR donnée TR (kN)	0,00				
Frottement					
qs _{clous} issus de	Abaques	~			
🥑 Rsc calculée à partir de qs					
Rayon équi. (m)	1,000				
Règle de calcul	Traction calculée et	cisaillement imposé	~		
📄 Cisaillement variable (le long	g du clou)				
Rcis (kN)	540,0				
Cal. de traction	Externe	~		~	

Figure 79. Caractéristiques du clou 1 (file des pieux 1)

Pour définir la valeur de q_s (frottement limite) pour chaque couche : comme indiqué dans l'exemple 1, il faut revenir aux caractéristiques des couches de sol après avoir défini les clous. Dans cet exemple, on ne prend pas en compte de traction dans les clous. Les valeurs de q_s à définir sont donc toutes nulles (un avertissement s'affiche mais dans ce cas précis, il convient donc de l'ignorer).

D.4.5 Définition de la phase 1

Cette 1^{ère} phase servira à vérifier la stabilité de la pente naturelle sans considérer les pieux.

Double-cliquer sur le menu **Ajouter une nouvelle phase** ou sur Ajouter une nouvelle phase pour créer la 1^{ère} phase du projet (par défaut, les clous sont désactivés lors de la création automatique de cette phase).

Une nappe phréatique existe au droit de la coupe étudiée. Pour la définir :

- Dans le volet de propriétés Propriétés de la phase , accéder au menu déroulant des Conditions hydrauliques et choisir l'option Nappe phréatique, puis cliquer sur le bouton Définir correspondant au Toit de la nappe.
- Dans le nouveau volet de définition du toit de la nappe, il faut introduire une succession de points qui la représente. 2 méthodes sont disponibles :
 - Cliquer sur le bouton Ajouter un élément à la liste + pour insérer les points définissant le toit de la nappe et compléter manuellement les coordonnées de chaque point.
 - Ou cliquer sur le bouton de la barre des « Outils », puis cliquer à la position des 8 points définissant le toit de la nappe.

La boîte de dialogue complétée est illustrée sur la Figure 80.

Propriétés de la phase						
🔄 Retour	Toit de la nappe					
				~	<u></u>	
			T	1	9	<u>.</u>
N°	X (m)	Y (m)		Angle	(°)	
1	-200,000	20,000				0,00
2	-100,000	20,000				0,00
3	-93,000	18,400				0,00
4	-70,000	17,400				0,00
5	-41,600	13,200				0,00
6	-16,800	10,800				0,00
7	3,400	9,400				0,00
8	50,000	9,200				0,00

Figure 80. Définition du toit de la nappe phréatique

Valider cette boîte de dialogue à la fin de la saisie en cliquant sur le bouton se Retour.

Nous allons à présent définir les 4 surfaces de rupture polygonales « quelconques » à examiner. Chaque surface de rupture polygonale sera examinée dans une situation différente. Nous allons donc définir 4 situations pour la phase 1.

D.4.5.1 Définition de la situation 1

Cette 1^{ère} situation servira à examiner la stabilité de la pente naturelle pour une 1^{ère} surface polygonale.

Double-cliquer sur le menu **Ajouter une nouvelle situation** ou cliquer sur Station pour créer la 1^{ère} situation.

Il convient ensuite de définir ses propriétés, notamment : pondérations partielles et surfaces de rupture, dans le volet **Propriétés de la situation**. Compléter ce volet selon les indications suivantes (cf. Figure 81) :

- Méthode de calcul : Perturbations (par défaut dans les propriétés du projet) ;
- <u>Pondérations partielles</u>: Clouterre Fondamental / Ouvrage courant (option choisie par défaut dans les propriétés du projet);
- <u>Sismique</u> : nous n'allons pas définir de conditions sismiques pour cette situation.
- <u>Surfaces de rupture</u> : nous allons choisir des surfaces de rupture quelconques, choisir « **Polygonale** » et cliquer sur le bouton Définir 😒.

La définition de la surface de rupture quelconque se fait de manière analogue à celle du toit de la nappe (dessin à la souris et/ou définition manuelle des coordonnées des points dans le tableau du volet de propriétés).

IMPORTANT : le premier et le dernier point d'une surface de rupture polygonale doivent toujours se trouver hors du terrain ; le second et l'avant-dernier point d'une surface de rupture polygonale doivent toujours se trouver dans le terrain.

Figure 81. Définition de la 1^{ère} situation de la 1^{ère} phase (à gauche) et définition de la surface de rupture polygonale pour cette situation (à droite)

Figure 82. Surface de rupture considérée dans la 1^{ère} situation de la 1^{ère} phase

Calcul et résultats pour la situation 1

Pour effectuer le calcul de cette situation, cliquer sur le bouton **Calculer la situation** courante calculer a dans les **Propriétés de la situation** ou bien cliquer sur le bouton **Calculer la situation courante** de la barre de boutons « Calcul ». Le calcul s'effectue puis le résultat s'affiche (Figure 83).

Figure 83. Résultat pour la 1^{ère} situation de la 1^{ère} phase

D.4.5.2 Définition de la situation 2

Cette 2^{ème} situation servira à examiner la stabilité de la pente naturelle pour une 2^{ème} surface polygonale différente.

Plutôt que de redéfinir les paramètres pour cette situation, nous allons réutiliser les paramètres définis pour la situation 1, puis modifier uniquement la surface de rupture à examiner.

 Cliquer avec le bouton droit de la souris sur la situation 1 et sélectionner l'option Dupliquer cette situation

Autre option possible : utiliser le bouton sélectionner l'option Copie de la situation "Situation 1" dans le menu déroulant du Contenu de la situation et l'option « A la fin » dans le menu déroulant du Futur emplacement.

• Il reste ensuite à modifier les propriétés de la situation, en modifiant la définition de la surface de rupture, conformément à la Figure 84.

Propriétés de la situation					
🔄 Retour Su	Retour Surface de rupture polygonale				
		🛨 🖬 🛍 🖯			
N°	X (m)	Y (m)			
1	-82,000	28,000			
2	-70,000	19,500			
3	-62,400	17,200			
4	-55,000	16,000			
5	-41,400	14,500			
6 -38,200					

Figure 84. Définition de la surface de rupture pour la 2^{ème} situation de la 1^{ère} phase

Résultats pour la situation 2

Après avoir calculé la situation 2, le résultat obtenu est indiqué sur la Figure 85.

Figure 85. Résultat de la 2^{ème} situation de la 1^{ère} phase

D.4.5.3 Définition de la situation 3

Cette 3^{ème} situation servira à examiner la stabilité de la pente naturelle pour une 3^{ème} surface polygonale différente.

Les manipulations de l'interface pour définir cette 3^{ème} situation sont les mêmes que pour définir la 2^{ème} situation. La surface de rupture à examiner est détaillée ci-dessous.

Propriétés de la situation					
🔄 Retour Si	Retour Surface de rupture polygonale				
		+ í 🛍 🖯			
N°	X (m)	Y (m)			
1	-94,000	26,000			
2	-87,000	18,300			
3	-83,000	16,000			
4	-70,000	14,000			
5	-58,000	12,200			
6	-40,000	11,600			
7	-35,600	11,600			
8	-32,000	12,000			
9	-27,200	14,400			

Figure 86. Définition de la surface de rupture pour la 3^{ème} situation de la 1^{ère} phase

Résultats pour la situation 3

Après avoir calculé la situation 3, le résultat obtenu est indiqué sur la Figure 87.

Figure 87. Résultat pour la 3^{ème} situation de la 1^{ère} phase

D.4.5.4 Définition de la situation 4

Cette 4^{ème} situation servira à examiner la stabilité de la pente naturelle pour une 4^{ème} surface polygonale différente.

Les manipulations de l'interface pour définir cette 4^{ème} situation sont les mêmes que pour définir la 2^{ème} situation. La surface de rupture à examiner est détaillée ci-dessous.

Propriétés de la situation					
Retour Surface de rupture polygonale					
		🛨 🖬 🛍 😳			
N°	X (m)	Y (m)			
1	-99,200	23,000			
2	-92,000	15,000			
3	-90,000	14,000			
4	-85,000	12,500			
5	-64,600	10,000			
6	-38,000	7,600			
7	-26,800	6,600			
8	-12,800	5,800			
9	-2,000	7,000			
10	4,800	10,400			

Figure 88. Définition de la surface de rupture pour la 4^{ème} situation de la 1^{ère} phase

Résultats pour la situation 4

Après avoir calculé la situation 4, le résultat obtenu est indiqué sur la Figure 89.

Figure 89. Résultat pour la 4^{ème} situation de la 1^{ère} phase

D.4.6 Définition de la phase 2

Toutes les surfaces examinées lors de la phase 1 fournissent des valeurs de F_{min} inférieures à l'unité. Cette 2^{ème} phase permettra d'apprécier l'apport des pieux vis-à-vis de la stabilité d'ensemble.

Il convient à présent d'activer les pieux (les 4 files de clous définies précédemment). En revanche, la nappe phréatique reste inchangée : il n'est donc pas nécessaire de la redéfinir.

- Dupliquer la phase 1 depuis l'arborescence du projet en cliquant dessus avec le bouton droit de la souris et en sélectionnant l'option **Dupliquer** cette phase défaut, la phase 2 ajoutée reprend la configuration de la phase précédente avec les mêmes situations et la même nappe phréatique.
- Modifier la phase 2 en cliquant sur chaque file de clous (pieux) pour les activer.

D.4.6.1 Définition des situations 1 à 4

Nous allons effectuer les mêmes vérifications de stabilité que pour la phase 1, c'est-à-dire, les mêmes surfaces de rupture seront examinées.

L'opération de duplication de phase a permis de copier les 4 situations de la phase précédente. Aucune modification des situations n'est à appliquer. Il suffit donc de lancer les calculs pour les 4 situations de la phase 2, grâce au bouton **Calculer la phase** calculer , accessible depuis l'une des situations (au choix).

D.4.6.2 Résultats obtenus pour les situations 1 à 4

Les résultats obtenus pour les situations 1 à 4 sont récapitulés dans le tableau ci-dessous. Ils sont complétés par les résultats obtenus en phase 1 afin de les comparer et apprécier l'apport des pieux vis-à-vis de la stabilité d'ensemble.

Phase	Phase 2
(sans les pieux)	(avec les pieux)
0,89	22,50
0,74	2,63
0,76	1,25
0,79	1,05
	(sans les pieux) 0,89 0,74 0,76 0,79

Figure 90. Synthèse des coefficients de sécurité obtenus vis-à-vis de la stabilité d'ensemble

Nous constatons que les pieux permettent de garantir la stabilité de la pente naturelle pour les surfaces examinées.

D.5 Tutoriel 4 : Estimation des diagrammes de poussée/butée limite par la méthode du calcul à la rupture

D.5.1 Présentation de l'étude et du principe de calcul

Ce tutoriel illustre l'application de la **méthode du calcul à la rupture** pour la recherche de la poussée limite (P_a) et de la butée limite (P_b) des terres.

Nous étudierons la stabilité d'un talus vertical de 5 m de hauteur monocouche pour différentes valeurs de l'obliquité des contraintes (δ), ce qui peut être utile lors des calculs d'écrans de soutènement (calcul type K-Réa). La démarche exposée peut être étendue à un cas plus complexe, notamment à un multicouche avec une géométrie quelconque, avec la présence de surcharges et ceci sous conditions hydrauliques et sismiques quelconques.

Le tutoriel est composé de deux parties :

- Etape 1 : recherche de la poussée limite (P_a)
- Etape 2 : recherche de la butée limite (P_b)

Principe du calcul :

Le principe du calcul consiste à rechercher la poussée/butée limite d'un sol en les « équilibrant » par un diagramme de surcharges extérieures (processus itératif). La démarche à suivre consiste à définir le chargement extérieur nécessaire qui permet de garantir cet équilibre.

Le **calcul à la rupture** (approche par l'extérieur) doit être utilisé en considérant le jeu de coefficients pondérateurs **unitaire** et en imposant **XF=1** (aucune dégradation des paramètres de cisaillement). La valeur visée est $F_{min}=1$ (équilibre des moments exercés).

Il est important de rappeler que la cinématique de mouvement de la « gauche » vers la « droite » doit toujours être respectée. Autrement dit, le sol sera placé à « gauche » pour la recherche de la poussée limite et à « droite » pour la recherche de la butée limite.

Considérons le talus vertical monocouche ci-dessous, les surcharges réparties triangulaires s'opposent à la poussée des terres (à gauche) et à la butée des terres (à droite).

Figure 91. Schéma de calcul pour l'estimation de la poussée limite (à gauche) et de la butée limite (à droite)

L'objectif est de retrouver les valeurs de p_a et p_b qui permettent d'obtenir $F_{min} = 1$. Si cette condition est respectée, la résultante de la surcharge extérieure sera égale à la résultante de la poussée/butée limite des terres. La valeur de k_a ou k_p peuvent être déduites à partir des expressions classiques $p_a = k_a \cdot \gamma \cdot H$ ou $p_b = k_p \cdot \gamma \cdot H$.

L'inclinaison de la poussée/butée limite recherchée est fixée par l'utilisateur par le biais de l'inclinaison de la surcharge extérieure définie. Le schéma de la figure correspond à une

obliquité nulle ($\delta_a = \delta_b = 0$), mais on peut mener le même raisonnement pour des obliquités différentes (en inclinant la surcharge extérieure appliquée).

D.5.2 Définition des propriétés du projet

- Lancer Talren en utilisant le menu **Démarrer** de Windows ou en cliquant sur l'icône située sur le bureau Windows ;
- Sélectionner le menu **Fichier** puis l'option **Nouveau** ou cliquer sur l'icône 📄 de la barre de boutons.
- Choisir le chemin et le nom pour l'enregistrement du fichier.
- La fenêtre correspondant à l'option de menu **Données/Description générale** s'ouvre alors automatiquement. La compléter comme indiqué sur la figure suivante.

La méthode de calcul par défaut sera le Calcul à la rupture pour ce projet.

Les pondérations utilisées par défaut correspondent au **jeu de coefficients unitaires**, c'est-à-dire, tous les coefficients partiels sont définis égaux à 1 (Figure 92).

Arborescence du projet				Propriétés du projet				
Projet "Recherche poussée/butée" (1)				Retour	Jeux d	le coefficients de sécuri	té	
A y								
Propriétés du projet			1	() Investig	la acaffici	ante de céquité du projet (d		1
Numéro d'affaire	Recherche poussée/b	utée		Jeux de coefficients de securite du projet (1)				
Titre du calcul	Recherche poussée/b	utée		Unitaire				~
Lieu	Fouille urbaine							
Commentaires	Recherche poussée/b d'un sol monocouche	utée						
	pour plusieurs inclinaisons			Nom	Unitaire			
				Г _{min}	1,000	Γ _{qsl,tirant,ab}	1,000	
				Γ _{s1}	1,000	Γ _{qsl,tirant,es}	1,000	
Xmin (m)	0,000			Γ _{s1}	1,000	Γ _{qsl,bande}	1,000	
Xmax (m)	50,000			Γ _φ	1,000	Г _{рі}	1,000	
Système d'unités	kN, kPa, kN/m3	*		Г _с .	1,000	Γ _{a,clou}	1,000	
$\gamma_w (kN/m^3)$	10,0			Г _{си}	1,000	Г _{а,tirant}	1,000	
	Onland Margaret			۲ _Q	1,000	Γ _{a,bande}	1,000	
Methode de calcui*	calcul a la rupture	~		Γ _{qsl,clou,ab}	1,000	Γ _{buton}	1,000	
Jeu de coef. de sécurité*	Unitaire	*		Γ _{qsl,clou,es}	1,000	Γ _{s3}	1,000	
* par défaut	Définir 🛬							

Figure 92. Description générale du projet (à gauche) et pondérations par défaut (à droite)

D.5.3 Définition de la géométrie

Les coordonnées des points de la géométrie sont les suivants :

N° point	X (m)	Y (m)
1	0	5
2	20	5
3	20	0
4	50	0

Tableau 8. Coordonnées des points

D.5.4 Définition des caractéristiques du sol

Une seule couche de sol est à définir :

Couche	γ	φ	C
	(kN/m³)	(°)	(kPa)
1	20.0	30	0.0

Tableau 9. Caractéristique	s du sol
----------------------------	----------

Figure 93. Modèle géométrique

D.5.5 Etape 1 : recherche de la poussée limite (pa)

Le modèle de calcul de cette 1^{ère} étape comportera 3 phases, chacune réservée à une inclinaison différente (δ_a):

Phase	δ _a (°)
1	0°
2	$\frac{2}{3}\varphi = 20^{\circ}$
3	$\varphi = 30^{\circ}$

D.5.5.1 Définition de la surcharge répartie extérieure

La surcharge répartie extérieure permettra d'équilibrer et « mesurer » la poussée limite des terres. Nous allons procéder dans le cas général où, a priori, sa valeur n'est pas connue.

La valeur initiale de la surcharge est prise égale à $p_a = 100$ kPa de manière arbitraire. Elle sera ajustée manuellement, et de manière itérative, en fonction de la valeur de F_{min} obtenue (valeur visée : $F_{min}=1,00$).

D.5.5.2 Phase 1 : poussée limite horizontale ($\delta_a=0^\circ$)

Cette 1^{ère} phase servira à rechercher la poussée limite horizontale.

La seule manipulation nécessaire est l'activation de la surcharge horizontale.

Figure 94. Définition de la phase 1

Situation 1

Il convient de définir ses paramètres de calcul comme suit :

- Méthode de calcul : Calcul à la rupture (choix par défaut)
- Jeu de coefficients de sécurité : **Unitaire** (choix par défaut)
- Pondération sur les paramètres de cisaillement du sol : XF = 1,00
- Discrétisation : 100
- Surfaces de rupture : Spirales logarithmiques (seul choix possible)

Propriétés de la	situation —				
🔄 Retour	Surface de rupture spirale				
L'intervalle d'en	trée				
Point gauche	X (m)	12,000	Y (m)	5,000	
Point droit	X (m)	20,000	Y (m)	5,000	
Nb découpages		10			
L'intervalle de sortie					
Point gauche	X (m)	20,000	Y (m)	0,000	бит
Point droit	X (m)	20,000	Y (m)	0,000	o
Nb découpages		0			
Spirales	à conc	à concavité vers le haut			
Exploration	par pa	par pas de 2.5°			
Précision (m)		0,001			
Nombre de su	irfaces sus	ceptibles o	l'être cald	ulées : 803	

Figure 95. Définition des spirales pour la situation 1 de la phase 1

Figure 96. Résultat pour la situation 1 de la phase 1 ($p_a = 100 \text{ kPa}, \delta = 0^\circ$)

La valeur de F_{min} obtenue est supérieure à 1,00, ce qui signifie que la valeur de la surcharge doit être diminuée afin de diminuer le moment résistant et le rendre égal au moment moteur. Nous décidons de considérer $p_a = 50 \text{ kPa}$.

Figure 97. Résultat pour la situation 1 de la phase 1 ($p_a = 50 \text{ kPa}, \delta = 0^\circ$)

La valeur de F_{min} obtenue est encore supérieure à 1,00, ce qui signifie que la valeur de la surcharge doit être encore diminuée afin de diminuer encore plus le moment résistant. Nous décidons de considérer $p_a = 33.333 \text{ kPa}$.

Figure 98. Résultat pour la situation 1 de la phase 1 ($p_a = 33.333 \text{ kPa}, \delta = 0^\circ$)

Nous constatons qu'une pression $p_a = 33.333$ kPa permet d'atteindre l'équilibre des moments ($F_{min} \approx 1,00$), nous la retenons. Il est possible de déduire la valeur du coefficient de poussée associée grâce à l'expression $p_a = k_a \cdot \gamma \cdot H$ (avec $\gamma = 20kN/m^3$ et H = 5 m): $k_a = 0,333$, valeur qui correspond à celle des tables de Kérisel et Absi.

D.5.5.3 Phase 2 : poussée limite inclinée à δ = +2/3 φ

Cette 2^{ème} phase servira à rechercher la poussée limite avec une inclinaison $\delta = +2/3 \varphi = +20^{\circ}$.

Une nouvelle surcharge doit être créée en dupliquant la précédente. <u>Talren n'accepte pas</u> les angles négatifs, il conviendra donc de définir une valeur de surcharge négative et une inclinaison de 180°-20°=**160**°.

La valeur initiale de la surcharge est prise égale à $p_a = -100 \text{ kPa}$ de manière arbitraire. Elle sera ajustée manuellement, et de manière itérative, en fonction de la valeur de F_{min} obtenue (valeur visée : $F_{min}=1,00$).

Il convient de s'assurer que dans cette phase la surcharge répartie 1 est désactivée et seule la surcharge répartie 2 est activée.

Il est nécessaire de définir la même situation que pour la phase précédente.

Il est ensuite possible d'effectuer le calcul pour la situation 1 de la phase 2.

Figure 99. Résultat pour la situation 1 de la phase 2 ($p_a = -100 \text{ kPa}$, $\delta = +\frac{2}{3}\varphi$)

La valeur de F_{min} obtenue est supérieure à 1,00, ce qui signifie que la valeur de la surcharge doit être diminuée, en valeur absolue, afin de diminuer le moment résistant. Nous décidons de considérer $p_a = -50$ kPa.

Figure 100. Résultat pour la situation 1 de la phase 2 ($p_a = 50 \text{ kPa}, \delta = +\frac{2}{3}\varphi$)

La valeur de F_{min} obtenue est encore supérieure à 1,00, ce qui signifie que la valeur de la surcharge doit être encore diminuée afin de diminuer encore plus le moment résistant. Nous décidons de considérer **p**_a = -30 kPa.

Figure 101. Résultat pour la situation 1 de la phase 2 ($p_a = -30$ kPa, $\delta = +\frac{2}{3}\varphi$)

Nous constatons qu'une pression $p_a = -30$ kPa permet d'atteindre l'équilibre des moments ($F_{min} \approx 1,00$), nous la retenons. Il est possible de déduire la valeur du coefficient de poussée associée grâce à l'expression $p_a = k_a \cdot \gamma \cdot H$ (avec $\gamma = 20kN/m^3$ et H = 5 m): $k_a = 0,300$, valeur qui correspond à celle des tables de Kérisel et Absi.

D.5.5.4 Phase 3 : poussée limite inclinée à $\delta = +\varphi$

Cette 3^{ème} phase servira à rechercher la poussée limite avec une inclinaison $\delta = +\varphi = +30^{\circ}$.

Une nouvelle surcharge doit être créée en dupliquant la précédente. <u>Talren n'accepte pas</u> les angles négatifs, il conviendra donc de définir une valeur de surcharge négative et une inclinaison de 180°-30°=**150**°.

La valeur initiale de la surcharge est prise égale à $p_a = -100 \text{ kPa}$ de manière arbitraire. Elle sera ajustée manuellement, et de manière itérative, en fonction de la valeur de F_{min} obtenue (valeur visée : $F_{min}=1,00$).

Il convient de s'assurer que dans cette phase les surcharges réparties 1 et 2 sont désactivées et seule la surcharge répartie 3 est activée.

Il est nécessaire de définir la même situation que pour les phases précédentes.

Il est ensuite possible d'effectuer le calcul pour la situation 1 de la phase 3.

Figure 102. Résultat pour la situation 1 de la phase 3 ($p_a = -100 \text{ kPa}, \delta = +\varphi$)

La valeur de F_{min} obtenue est supérieure à 1,00, ce qui signifie que la valeur de la surcharge doit être diminuée, en valeur absolue, afin de diminuer le moment résistant. Nous décidons de considérer $p_a = -50$ kPa.

Figure 103. Résultat pour la situation 1 de la phase 3 ($p_a = -50$ kPa, $\delta = +\varphi$)

La valeur de F_{min} obtenue est encore supérieure à 1,00, ce qui signifie que la valeur de la surcharge doit être encore diminuée, en valeur absolue, afin de diminuer encore plus le moment résistant. Nous décidons de considérer $p_a = -30.45 \text{ kPa}$.

Figure 104. Résultat pour la situation 1 de la phase 3 ($p_a = -30.45 \text{ kPa}, \delta = +\varphi$)

Nous constatons qu'une pression $p_a = 30.45$ kPa permet d'atteindre l'équilibre des moments ($F_{min} \approx 1,00$), nous la retenons. Il est possible de déduire la valeur du coefficient de poussée associée grâce à l'expression $p_a = k_a \cdot \gamma \cdot H$ (avec $\gamma = 20 kN / m^3$ et H = 5 m) : $k_a = 0,305$, au lieu de K_a = 0,308 lue dans les tables de Kérisel et Absi pour $\delta = +\varphi$.

Dans le cas d'un équilibre de poussée, l'évaluation de la charge de rupture par excès (approche par l'extérieur avec le calcul à la rupture) implique une sous-estimation du coefficient K_a, ce qui est conforme au résultat obtenu : $K_{a calcul à la rupture} < K_{a théorique}$.

D.5.6 Etape 2 : Recherche de la butée limite (p_b)

Il s'agit cette fois d'estimer la butée limite (P_b), de façon tout-à-fait analogue à ce qui a été fait précédemment pour la poussée limite, mais sur une coupe « inversée » pour respecter la cinématique exigée par Talren (de la « gauche » vers la « droite »).

Nous allons réutiliser les données définies précédemment.

- Enregistrer ce nouveau projet sous un nouveau nom (butee.t5p par exemple)
- Sélectionner le menu Projet <a>

 puis l'option Retourner la coupe de sol

Nous allons étendre le modèle à droite (les surfaces de rupture en butée sont susceptibles de concerner une zone de sol plus importante). Pour cela, définir $X_{max} = 20$ m dans les propriétés (au lieu de $X_{max} = 0$ suite au retournement de la coupe). Le modèle sera alors automatiquement étendu jusqu'en X = 20 m. Il conviendra également de modifier l'abscisse du point 1 : X = 20 m (au lieu de X = 0 m).

Le modèle de calcul de cette 2^{em} étape comportera 3 phases, chacune réservée à une inclinaison différente (δ_a):

Phase	δ _b (°)
1	0°
2	$-\frac{2}{3}\varphi = -20^{\circ}$
3	-φ = -30°

D.5.6.1 Phase 1 : butée limite horizontale ($\delta_a=0^\circ$)

Cette 1^{ère} phase servira à rechercher la butée limite horizontale.

Situation 1

Il convient de définir ses paramètres de calcul comme suit :

- Méthode de calcul : Calcul à la rupture (choix par défaut)
- Jeu de coefficients de sécurité : Unitaire (choix par défaut)
- Pondération sur les paramètres de cisaillement du sol : XF = 1,00
- Discrétisation : 100
- Surfaces de rupture : Spirales logarithmiques (seul choix possible)

						Г	Propriétés du pr	rojet ——				
							🔄 Retour	Surcha	rges			
Propriétés de la siti	uation —						Current and a		Currhanna linfainna			
🔄 Retour Si	urface de	e rupture spi	irale				Surcharges re	parties (3	5) Surcharges lineaires	et moment	5	
							Charge réparti	e 1	✓ ± ≤	\$ 端 1	i T	
L'intervalle d'entré	e				0		Surcharge ré	partie in	dividuelle			
Point gauche	X (m)	-20,000	Y (m)	0,000	<u> </u>		Nom		Charge répartie 1			
Point droit	X (m)	-20,000	Y (m)	0,000					charge repaired r			
Nb découpages		0					Point gauche					
							X (m)		-20,000			
L'intervalle de sort	tie						Y (m)		0,000			
Point gauche	X (m)	-20,000	Y (m)	5,000	бит		q (kPa)		100,000			
Point droit	X (m)	0,000	Y (m)	5,000	oup							
Nb découpages		10					Point droit					
							X (m)		-20,000			
Spirales	à con	cavité vers le	haut	~			Y (m)		5,000			
Exploration	par pa	as de 2.5°		~			q (kPa)		0,000			
Précision (m)		0,001										
							Angle (°)		180,00			
Nombre de surfac	ces susce	ptibles d'être	calculées	s : 803								

Figure 105. Définition des spirales pour la situation 1 de la phase 1 (à gauche) et Définition initiale de la surcharge 1 (à droite)

Figure 106. Résultat pour la situation 1 de la phase 1 ($p_b = 100 \text{ kPa}, \delta = 0^\circ$)

La valeur de F_{min} obtenue est supérieure à 1,00, ce qui signifie que la valeur de la surcharge doit être augmentée afin d'augmenter le moment moteur et le rendre égal au moment résistant.

Nous décidons de considérer $p_b = 300 \text{ kPa}$.

Figure 107. Résultat pour la situation 1 de la phase 1 (p_b = 300 kPa, δ = 0°)

Nous constatons qu'une pression $p_b = 300$ kPa permet d'atteindre l'équilibre des moments ($F_{min} \approx 1,00$), nous la retenons. Il est possible de déduire la valeur du coefficient de butée associée grâce à l'expression $p_b = k_b \cdot \gamma \cdot H$ (avec $\gamma = 20kN/m^3$ et H = 5 m): $k_p = 3,000$, valeur qui correspond à celle des tables de Kérisel et Absi.

D.5.6.2 Phase 2 : butée limite inclinée à δ = -2/3 φ

Cette 2^{ème} phase servira à rechercher la butée limite avec une inclinaison $\delta = -2/3 \varphi = -20^{\circ}$.

Une nouvelle surcharge doit être créée en dupliquant la précédente.

La valeur initiale de la surcharge est prise égale à $p_b = 100 \text{ kPa}$ de manière arbitraire (le signe négatif sert à l'orienter vers la « droite »). Elle sera ajustée manuellement, et de manière itérative, en fonction de la valeur de F_{min} obtenue (valeur visée : $F_{min}=1,00$).

Il convient de s'assurer que dans cette phase la surcharge répartie 1 est désactivée et seule la surcharge répartie 2 est activée.

Il est nécessaire de définir la même situation que pour la phase précédente.

Il est ensuite possible d'effectuer le calcul pour la situation 1 de la phase 2.

Figure 108. Résultat pour la situation 1 de la phase 2 ($p_b = 100 \text{ kPa}, \delta = -\frac{2}{3}\varphi$)

La valeur de F_{min} obtenue est supérieure à 1,00, ce qui signifie que la valeur de la surcharge doit être augmentée afin d'augmenter le moment moteur. Nous décidons de considérer **p**_b = **500 kPa**.

Figure 109. Résultat pour la situation 1 de la phase 2 ($p_b = 500 \text{ kPa}, \delta = +\frac{2}{3}\varphi$)

La valeur de F_{min} obtenue est encore supérieure à 1,00, ce qui signifie que la valeur de la surcharge doit être encore augmentée afin de d'augmenter encore plus le moment moteur.

Nous décidons de considérer $p_b = 535 \text{ kPa}$ et de raffiner l'intervalle de sortie pour mieux estimer la surface qui nous intéresse.

Retour Su	rface de ru	pture spirale			
'intervalle d'entrée					
Point gauche	X (m)	-20,000	Y (m)	0,000	Æ
Point droit	X (m)	-20,000	Y (m)	0,000	₽
Nb découpages		0			
l'intervalle de sortie		10.000			<i>A</i>
l'intervalle de sortie	9				0
oint gauche	X (m)	-12,000	Y (m)	5,000	OUT
Point droit	X (m)	-6,000	Y (m)	5,000	eΦ
Nb découpages		20			
Spirales	à conc	avité vers le hau	ut	~	
Exploration	par pa	s de 2.5°		~	
Précision (m)		0,001			

Figure 110. Paramètres de recherche des spirales logarithmiques pour la situation 1 de la phase 2

Figure 111. Résultat pour la situation 1 de la phase 2 ($p_b = 535$ kPa, $\delta = -\frac{2}{3}\varphi$)

Nous constatons qu'une pression $\mathbf{p}_b = 535 \text{ kPa}$ permet d'atteindre l'équilibre des moments ($F_{min} \approx 1,00$), nous la retenons. Il est possible de déduire la valeur du coefficient de butée associée grâce à l'expression $p_b = k_b \cdot \gamma \cdot H$ (avec $\gamma = 20kN/m^3$ et H = 5 m) : $k_p = 5,350$, à comparer à K_p = 5,300 lue dans les tables de Kérisel et Absi pour $\delta = -2/3\varphi$.

Dans le cas d'un équilibre de butée, l'évaluation de la charge de rupture par excès (approche par l'extérieur avec le calcul à la rupture) implique une surestimation du coefficient K_p, ce qui est conforme au résultat obtenu : K_{p calcul à la rupture} > K_{p théorique}.

D.5.6.3 Phase 3 : butée limite inclinée à $\delta = -\varphi$

Cette 3^{ème} phase servira à rechercher la butée limite avec une inclinaison $\delta = -\varphi = -30^{\circ}$.

Une nouvelle surcharge doit être créée en dupliquant la précédente. <u>Talren n'accepte pas</u> les angles négatifs, il conviendra donc de définir une valeur de surcharge négative et une inclinaison de 180°-°30°=°**150**°.

La valeur initiale de la surcharge est prise égale à $p_b = 100 \text{ kPa}$ de manière arbitraire. Elle sera ajustée manuellement, et de manière itérative, en fonction de la valeur de F_{min} obtenue (valeur visée : $F_{min} = 1,00$).

Il convient de s'assurer que dans cette phase les surcharges réparties 1 et 2 sont désactivées et seule la surcharge répartie 3 est activée.

Il est nécessaire de définir la même situation que pour les phases précédentes.

Il est ensuite possible d'effectuer le calcul pour la situation 1 de la phase 3.

Figure 112. Résultat pour la situation 1 de la phase 3 ($p_b = 100 \text{ kPa}, \delta = -\varphi$)

La valeur de F_{min} obtenue est supérieure à 1,00, ce qui signifie que la valeur de la surcharge doit être augmentée afin d'augmenter le moment moteur. Nous décidons de considérer **p**_b = 600 kPa.

terrasol

Figure 113. Résultat pour la situation 1 de la phase 3 ($p_b = 600 \text{ kPa}, \delta = +\varphi$)

La valeur de F_{min} obtenue est encore supérieure à 1,00, ce qui signifie que la valeur de la surcharge doit être encore augmentée afin d'augmenter encore plus le moment moteur. Nous décidons de considérer $p_b = 690 \ kPa$.

Figure 114. Résultat pour la situation 1 de la phase 3 ($p_b = 690 \text{ kPa}, \delta = -\varphi$)

Nous constatons qu'une pression $\mathbf{p}_b = 690 \text{ kPa}$ permet d'atteindre l'équilibre des moments ($F_{\min} \approx 1,00$), nous la retenons. Il est possible de déduire la valeur du coefficient de butée associée grâce à l'expression $p_b = k_b \cdot \gamma \cdot H$ (avec $\gamma = 20kN/m^3$ et H = 5 m): $k_p = 6,90$, à

comparer à K_p = 6,500 lue dans les tables de Kérisel et Absi pour δ = - ϕ .

Dans le cas d'un équilibre de butée, l'évaluation de la charge de rupture par excès (approche par l'extérieur avec le calcul à la rupture) implique une surestimation du coefficient K_p, ce qui est conforme au résultat obtenu : K_{p calcul à la rupture} > K_{p théorique}.

Récapitulatif des résultats obtenus

	K _{p théorique} (tables)	K _{p calcul à la rupture} (Talren)
δ = 0	3,000	3,000
$\delta = -\frac{2}{3}\varphi$	5,300	5,350
δ = - φ	6,500	6,900

Tableau 10. Synthèse des valeurs de k_p obtenues avec Talren pour F = 1,0
(après correction si nécessaire de l'intensité des surcharges)
et comparaison aux valeurs des tables de Kérisel et Absi

Dans le cas d'un équilibre de butée, l'évaluation de la charge de rupture par excès (approche par l'extérieur avec le calcul à la rupture) implique une surestimation du coefficient K_p, ce qui est conforme au résultat obtenu : K_{p calcul à la rupture} > K_{p théorique} pour $\delta = -\frac{2}{3}\varphi$ et $\delta = -\varphi$.

D.6 Tutoriel 5 : Etude d'un gabion cellulaire par la méthode du calcul à la rupture (spirales à concavité vers le haut ou vers le bas)

D.6.1 Présentation de l'étude

Figure 115. Etude d'un gabion cellulaire – schéma du gabion

Ce tutoriel traite la stabilité d'un gabion cellulaire soumis à une poussée d'eau différentielle sur son rideau amont, avec prise en compte des spirales à concavité positive (ver le haut) dans un premier temps, puis à concavité négative (vers le bas) dans un deuxième temps. Le mécanisme de rupture étudié est celui de la rupture interne au gabion (mécanisme X de Brinch Hansen, 1953).

- Lancer Talren en utilisant le menu **Démarrer** de Windows ou en cliquant sur l'icône située sur le bureau Windows ;
- Sélectionner le menu **Fichier** puis l'option **Nouveau** ou cliquer sur l'icône 📄 de la barre de boutons ;
- Choisir le chemin et le nom pour l'enregistrement du fichier ;
- Il convient de renseigner les propriétés du projet comme indiqué dans la Figure 116 : on choisit comme méthode de calcul par défaut du calcul à la rupture, et comme pondérations par défaut le jeu « traditionnel/provisoire » (que l'on complète pour ce tutoriel par des valeurs unitaires, sans que cela constitue une référence pour d'autres calculs).

•	
Propriétés du projet	
Numéro d'affaire	20721DEV
Titre du calcul	Gabion cellulaire
Lieu	
Commentaires	
Xmin (m)	-30,000
Xmax (m)	30.000
Système d'unités	kN, kPa, kN/m3
v (kN/m ³)	10.0
'W (
Méthode de calcul*	Calcul à la rupture
Jeu de coef. de sécurité*	Traditionnel/Sit. provisoire
* par défaut	Définir 🛬
Fond de plan	Définir 🛬
Géométrie	Définir 🍉
Caractéristiques des sols	Définir 🤟
Surcharges	Définir 🛬
Renforcements	Définir 🛬

Figure 116. Propriétés du projet

D.6.2 Définition de la géométrie

Les limites du modèle et les coordonnées des points de la géométrie sont conformes à la figure Figure 117.

Figure 117. Géométrie du modèle

D.6.3 Définition des surcharges

Le gabion cellulaire est soumis à une poussée d'eau différentielle sur son rideau amont. On adopte une approche en contraintes effectives où l'effet de l'eau sur le gabion est modélisé par :

- L'application de la poussée différentielle sur le rideau amont (surcharge répartie triangulaire appliquée sur le parement gauche du gabion, conformément aux données de la Figure 118).
- L'utilisation du poids volumique déjaugé γ' = γ γ_w dans les couches de sol placées sous nappe (couche de fondation) et du poids total dans le gabion (sol hors nappe), conformément au § D.6.4.

Surcharge	S	
Surcharges réparties (1)	Surcharges linéaires et mo	ments
Charge répartie 1	~ ±	s 😘 í 🛍 🌽
Surcharge répartie indiv	iduelle	
Nom	Charge répartie 1	
Point gauche		
X (m)	-9,800	
Y (m)	-15,000	
q (kPa)	-150,000	
Point droit		
X (m)	-9,800	
Y (m)	0,000	
q (kPa)	0,000	
	0.00	
Angle (*)	0,00	

Figure 118. définition de la surcharge répartie (poussée différentielle sur le gabion)

			0	Raccourcis	100	-		Zoom	1	221			Outils	200			
	Fichier	Projet	Aide		Image: A state of the state	0	5 6	2	P	2 8	÷μ	24	4	0			
-	-30		-20	15	10	5 .	9	!	5	10	15	5	20		25	. 3	 <
15	2																
10																	
Ľ	- - -																
c)- - -					0	R.	16									
ų				E													:
-10				_	-												:
-15	-	10		/		100		C	14		٩.,	1	U	×	2		
-20	-																
-25	1																
-30	-																
	Création dir	recte de la géomét	rie	Copie d'écr	an												
	2		řá		ić.												

Figure 119. Modèle après définition de la surcharge répartie (poussée différentielle sur le rideau amont du gabion)

D.6.4 Définition des caractéristiques de sol

Deux couches de sol sont à définir. Leurs caractéristiques sont données dans le tableau suivant (poids déjaugé pour la couche 2 sous le gabion).

Couche	γ (kN/m³)	φ (°)	c (kPa)
Couche 1	22.0	30.0	0.0
Couche 2	12.0	30.0	0.0

Tableau 11. Caractéristiques des sols

Pour définir ces caractéristiques, sélectionner l'item **Caractéristiques des sols E**. Cliquer sur le bouton **Ajouter +**, puis compléter les données pour la première couche. Cliquer à nouveau sur **Ajouter +** puis définir les données pour les autres couches de sol. Pour passer d'une couche de sol à l'autre, cliquer sur le libellé de la couche dans la liste. La saisie pour la couche 1 est illustrée sur la figure suivante.

Keloui (Cara	ctéristiques des sols						
🕞 Couches o	le si	ol du projet (2)		÷	4	1	E	¢
Couche 1 Couche 2	\$	Nom v (kN/m ³)	Couche 1 22.0	E Favoral	ble			
		c (kPa) Cohésion	0,0 Effective	∆ _c (kPa	/m)			0,0
		φ (°)	30,00					
	••••	clous						
		Coefficients de sécu	irité spécifiques					
		0 0 0	porter vers la ba	ise de donné	es			

Figure 120. Caractéristiques de la couche 2

Pour attribuer ces caractéristiques aux zones de sol, procéder par exemple par glisserdéposer (« drag&drop ») depuis la liste à gauche de la boîte de dialogue des sols (cf. Figure 121 pour la position des couches).

Figure 121. Attribution des couches de sol

La saisie des données pour ce projet est à présent terminée.

D.6.5 Définition de la phase 1

Une seule phase sera définie pour ce projet (une seule coupe/géométrie).

- Créer la première phase en cliquant sur le bouton 🚱 Ajouter une nouvelle phase ;
- Activer la surcharge en cliquant dessus.

D.6.5.1 Définition de la situation 1

Créer la première situation en cliquant sur le bouton Ség Ajouter une nouvelle situation. Il convient de définir ses propriétés, notamment : pondérations partielles et surfaces de rupture.

Nous allons étudier dans cette 1^{ère} situation les spirales à concavité positive (vers le haut).

Compléter le volet de propriétés de la situation qui apparaît selon les indications suivantes (Figure 122) :

- Méthode de calcul : calcul à la rupture (option choisie par défaut dans la description générale)
- Pondérations partielles : "Traditionnel/Sit. provisoire" (option choisie par défaut dans la description générale). On conserve la valeur par défaut pour XF (XF = 1,0).
- Sismique : nous n'allons pas définir de conditions sismiques pour cette situation.
- Définition des surfaces de rupture : nous allons définir des spirales logarithmiques ayant pour extrémités les 2 bases du gabion (cf. Figure 122), avec pour cette première situation une concavité orientée vers le haut, et un balayage de l'angle au centre par pas de 10°.

terrasol

setec

Figure 122. Définition de la 1^{ère} situation de la 1^{ère} phase (à gauche) et paramètres de recherche des spirales logarithmiques avec concavité vers le haut (à droite)

Résultats pour la situation 1

Pour effectuer le calcul de cette situation, cliquer sur le bouton de la barre de boutons. Le calcul s'effectue puis le résultat s'affiche. Sur la Figure 123, l'affichage de toutes les surfaces de rupture calculées a été demandé.

Figure 123. Résultat pour la situation 1 de la phase 1 (concavité vers le haut)

Le coefficient de rupture (ou facteur de confiance) obtenu est F = 3,32.

La spirale la plus critique est celle de concavité nulle (droite reliant les 2 extrémités).

Il convient donc d'explorer également les spirales à concavité négative, pour vérifier si elles ne conduisent pas à un résultat plus défavorable.

Pour cela, nous allons définir une 2^{ème} situation dans la même phase.

D.6.5.2 Définition de la situation 2

Plutôt que de redéfinir les paramètres pour cette situation, nous allons réutiliser les paramètres définis pour la situation 1, puis modifier uniquement la définition des spirales.

- Dupliquer la situation situation la depuis le menu contextuel de la situation 1.
- Puis renseigner les propriétés de la situation, conformément à la Figure 124 avec concavité vers le bas cette fois.

Retour Surface de rupture spirale L'intervalle d'entrée Point gauche X (m) -9,800 Y (m) -15,000 M Point droit X (m) -9,800 Y (m) -15,000 M Nb découpages 0 V (m) -15,000 M L'intervalle de sortie V V (m) -15,000 M Point gauche X (m) 9,800 Y (m) -15,000 M Point droit X (m) 9,800 Y (m) -15,000 M Nb découpages 0 V (m) -15,000 M
L'intervalle d'entrée Point gauche X (m) -9,800 Y (m) -15,000 2 Point droit X (m) -9,800 Y (m) -15,000 2 Nb découpages 0 V(m) -15,000 2 L'intervalle de sortie
Point gauche X (m) -9,800 Y (m) -15,000 4 Point droit X (m) -9,800 Y (m) -15,000 1 Nb découpages 0 V (m) -15,000 1 L'intervalle de sortie 9,800 Y (m) -15,000 1 Point droit X (m) 9,800 Y (m) -15,000 1 1 Nb découpages 0 1
Point droit X (m) -9,800 Y (m) -15,000 M Nb découpages 0
Nb découpages 0 L'intervalle de sortie Point gauche X (m) 9,800 Y (m) -15,000 4 Point droit X (m) 9,800 Y (m) -15,000 4 Nb découpages 0 4
L'intervalle de sortie Point gauche X (m) 9,800 Y (m) -15,000 4 Point droit X (m) 9,800 Y (m) -15,000 4 Nb découpages 0 0 4 1
L'intervalle de sortie Point gauche X (m) 9,800 Y (m) -15,000 ≨ Point droit X (m) 9,800 Y (m) -15,000 ∰ Nb découpages 0
Point gauche X (m) 9,800 Y (m) -15,000 2 Point droit X (m) 9,800 Y (m) -15,000 2 Nb découpages 0
Point droit X (m) 9,800 Y (m) -15,000 2 Nb découpages 0
Nb découpages 0
Spirales à concavité vers le bas
Exploration par pas de 10° 🗸
Précision (m) 0,010
Nombre de surfaces susceptibles d'être calculées : 19

Figure 124. Définition des paramètres de recherche des spirales logarithmiques pour la 2^{ème} situation de la 1^{ère} phase (concavité des spirales orientée vers le bas)

Résultats pour la situation 2

Le résultat obtenu est indiqué sur la Figure 125 (avec affichage de toutes les surfaces de rupture calculées).

Figure 125. Résultat pour la situation 2 de la phase 1 (concavité vers le bas)

Cette fois-ci, nous obtenons F = 2,69.

Il convient de rechercher par itération la valeur de XF permettant d'obtenir F = 1,00 : **XF = 2,74**.

Figure 126. Résultat pour la situation 2 de la phase 1 (XF = 2,74)

Ce résultat montre que le calcul pour les concavités vers le bas est plus défavorable que celui de la situation 1 pour les concavités vers le haut. La spirale la plus défavorable est la spirale de concavité négative avec un angle au centre $\theta = 60^{\circ}$.

Cette 2^{ème} situation a mis en évidence un mécanisme de rupture interne au gabion qu'il faut prendre en compte, ce qui illustre l'intérêt dans ce cas du **calcul à la rupture**.

Nota : il pourrait sembler plus logique de modéliser l'action de l'eau par une nappe extérieure, plutôt que par une surcharge horizontale équivalente.

Mais le calcul avec nappe extérieure n'aurait pas donné le résultat souhaité dans ce cas : en effet, dans l'application de la méthode du calcul à la rupture faite dans Talren, il a été choisi de ne pas séparer les actions du poids et de l'eau. On examine donc si le cumul (poids + eau) est moteur ou résistant. Il n'est ainsi pas possible de dissocier les actions du poids et de l'eau, ce qui est nécessaire ici (le poids étant résistant et l'action de l'eau motrice).

PARTIE 2 : EXEMPLES D'APPLICATION DE TALREN

Ce chapitre présente sommairement quelques exemples d'applications courants de Talren. Les manipulations de l'interface ne sont pas explicitées afin d'alléger les explications. Les fichiers correspondant aux exemples présentés sont fournis au format « .t5p » dans le répertoire d'installation de Talren v5 et accessibles depuis le menu fichier de l'interface.

Quelques commentaires :

- Pour la plupart des exemples, une seule famille de surfaces de rupture est examinée. Il est évident que dans la majorité des exemples présentés, d'autres familles de surfaces de rupture doivent être examinées telles que celles correspondant à des phases provisoires, aux passages dans les différentes couches, aux passages à différents niveaux de l'excavation, etc.
- Pour certains exemples, les calculs de stabilité présentés correspondent à une vérification du dimensionnement défini par une autre méthode de calcul en parallèle, telle que : calcul d'écran (avec un comportement élastoplastique du sol), stabilité d'un mur de soutènement vis-à-vis du renversement, glissement et charge admissible des sols de fondation, etc.
- Certains ouvrages dimensionnés avec Talren présentant une géométrie particulière doivent faire l'objet de vérifications annexes. Par exemple, un ouvrage cloué avec un élancement relativement faible (longueur des clous relativement faible par rapport à la hauteur du soutènement) pouvant conduire à des déformations notables du massif cloué et à des contraintes importantes à sa base.
- Le type d'ouvrage (sensible ou non) ainsi que les combinaisons d'actions (fondamentales ou accidentelles) sont spécifiques à chaque étude et à chaque ouvrage. Ils ne peuvent pas être étendus à des cas présentant des similitudes avec les exemples présentés ci-après.
- Les valeurs de paramètres fournies dans les exemples ci-après ne sont que des valeurs exemples et ne doivent pas être considérées comme des références.

D.7 Exemple 1 : reprise en sous-œuvre d'un bâtiment

Cet exemple présente la reprise en sous-œuvre d'un bâtiment apportant de fortes charges sur le sol. Les renforts se composent de 2 files de pieux réalisés en jet-grouting et d'un lit de tirants, l'ensemble étant liaisonné en tête par une longrine.

Le dimensionnement des inclusions pour cette reprise en sous-œuvre a fait l'objet d'une étude préliminaire pour la détermination des efforts internes aux inclusions, ainsi que pour l'estimation des déplacements que l'on peut attendre. Les calculs, dont les résultats sont présentés ci-dessous, n'ont pour but que de vérifier la stabilité globale de l'ouvrage en considérant plusieurs surfaces de rupture pouvant se développer.

Tableau récapitulatif des couches de sol X														
Couches de sol (2)														
Nom Couleur γ φ c Δc qs clous pl KsB Anisotro Favorable Coefficients de sécurité Γ _γ Γ _ο Γ _{ταπ(φ)} Type de cohési Courbe														
1 Couche 1 19,0 39,00 0,0 0,0 250,0 3000,0 67500,0 Non Non Non Effective Linéaire														
2 Couche 2 19,0 0,00 999,0 0,0 300,0 5000,0 Non Non Effective Linéaire														
Copier Exporter Fermer														

🔽 Tableau réca	🔽 Tableau récapitulatif des surcharges X											
A Charges réparties (3)												
	Nom	X gauche	Y gauche	q gauche	X droite	Y droite	q droite	Ang/horizontale				
1	Sr 1	-100,000	4,500	155,0	-10,200	4,500	155,0	90,00				
2	Sr 2	-10,200	4,500	375,0	-4,200	4,500	375,0	90,00				
3	Sr 3	-4,200	4,500	155,0	0,000	4,500	155,0	90,00				
			Copier	Exporter	Fermer							

D.8 Exemple 2 : stabilité d'un talus provisoire

Cet exemple présente la vérification de la stabilité globale d'un talus provisoire qui ne satisfait pas les conditions de stabilité (calcul selon les recommandations Clouterre).

🔽 Tableau	récapitulatif d	les couches d	e sol														×
Couche:	s de sol (4)																
	Nom	Couleur	γ	φ	с	Δc	qs clous	pl	KsB	Anisotropie	Favorable	Coefficients de sécurité spécifi	Гу	г,	Γ _{tan(φ)}	Type de cohé	Courbe
1	Couche 1		20,1	25,00	15,0	0,0	1.1			Non	Non	Non		-	-	Effective	Linéaire
2	Couche 2		18,5	25,00	20,0	0,0	1.1			Non	Non	Non		-	-	Effective	Linéaire
3	Couche 3		18,5	30,00	20,0	0,0	1.1			Non	Non	Non		-	-	Effective	Linéaire
4	Couche 4		19,5	25,00	20,0	0,0				Non	Non	Non			-	Effective	Linéaire
								🏪 Copier	🛬 Expo	ter Ferr	ner						

D.9 Exemple 3 : stabilité d'un soutènement par géogrilles

Cet exemple présente une extension d'un parking bordant une pente de talus et pour laquelle il a été réalisé un soutènement constitué par géogrilles ancrées sur un mur de type « gabions ».

Cette étude de stabilité doit s'accompagner d'une étude de l'équilibre local du mur de type « gabion », ainsi que de l'étude de stabilité traditionnelle des ouvrages constitués de géogrilles.

Les caractéristiques des géogrilles ont été tirées des abaques du fournisseur.

	Nom	X (m)	Y (m)	Espacement horizontal (m)	Inclinaison/ horizontale (°)	Largeur base de diffusion (m)	Angle de diffusion (°)	TR (kN)	Longueur (m)	Largeur (m)	γ _{remblai} (kN/m ³)	Type de pondération	Traction	μ_0^*	µ1*
1	Bande 1	-2.18	30	1	0	0.5	20	16.9	5	1	19	Minorateur (< 1)	Externe	0.32	0.32
2	Bande 2	-2.04	29.5	1	0	0.5	20	16.9	5	1	19	Minorateur (< 1)	Externe	0.32	0.32
3	Bande 3	-1.9	29	1	0	0.5	20	16.9	5	1	19	Minorateur (< 1)	Externe	0.32	0.32
4	Bande 4	-1.76	28.5	1	0	0.5	20	16.9	5	1	19	Minorateur (< 1)	Externe	0.32	0.32
5	Bande 5	-1.62	28	1	0	0.5	20	16.9	5	1	19	Minorateur (< 1)	Externe	0.32	0.32
6	Bande 6	-1.48	27.5	1	0	0.5	20	16.9	5	1	19	Minorateur (< 1)	Externe	0.32	0.32
7	Bande 7	-1.33	27	1	0	0.5	20	16.9	5	1	19	Minorateur (< 1)	Externe	0.32	0.32
8	Bande 8	-1.19	26.5	1	0	0.5	20	16.9	5	1	19	Minorateur (< 1)	Externe	0.32	0.32
9	Bande 9	-1.05	26	1	0	0.5	20	16.9	5	1	19	Minorateur (< 1)	Externe	0.32	0.32
10	Bande 10	-0.91	25.5	1	0	0.5	20	16.9	5	1	19	Minorateur (< 1)	Externe	0.32	0.32
11	Bande 11	-0.77	25	1	0	0.5	20	16.9	5	1	19	Minorateur (< 1)	Externe	0.32	0.32
12	Bande 12	-0.63	24.5	1	0	0.5	20	16.9	5	1	19	Minorateur (< 1)	Externe	0.32	0.32
13	Bande 13	3	24.1	1	0	0.5	20	36.47	8.5	1	19	Minorateur (< 1)	Externe	0.32	0.32
14	Bande 14	3.6	23.75	1	0	0.5	20	36.47	9	1	19	Minorateur (< 1)	Externe	0.32	0.32
15	Bande 15	4.2	23.4	1	0	0.5	20	36.47	9.5	1	19	Minorateur (< 1)	Externe	0.32	0.32

D.10 Exemple 4 : réfection d'une chaussée après glissement

Cet exemple représente une confortation pour la réfection d'une chaussée recoupant un glissement, par 4 lits de tirants, avec un drainage de la partie amont du soutènement et la mise en place d'éperons drainants en partie basse de la zone glissée.

Ce calcul intervient après un calcul de stabilité de l'état initial avant glissement qui a permis de caler les caractéristiques des sols sur le plan de glissement pour les conditions hydrauliques reconnues avant l'amorce du glissement.

Les caractéristiques de cisaillement ont été calées sur la rupture. L'ouvrage à réaliser a été considéré comme non sensible, bien que l'on soit dans le cas d'un glissement.

🔽 Tablea	u récapitulat	if des coucl	nes de sol															×
Couch	ies de sol (5)																	
	Nom	Couleur	Y	φ	с	Δc	qs clous	pl	KsB	Anisotropie	Favorable	Coefficients de sécurité spé	Г	г,	Γ _{tan(φ)}	Type de cohésion	Courbe	
1	Couche 1		19,0	23,00	0,0	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire	
2	Couche 2		19,0	23,00	0,0	0,0	-	-		Non	Non	Non	-	-	-	Effective	Linéaire	
3	Couche 3		21,0	35,00	30,0	0,0			-	Non	Non	Non	-	-	-	Effective	Linéaire	
4	Couche 4		22,0	35,00	40,0	0,0	-		-	Non	Non	Non	-	-	-	Effective	Linéaire	
5	Couche 5		20,0	30,00	0,0	0,0	-	-	-	Non	Oui	Non	-	-	-	Effective	Linéaire	
										P Copier	Expor	ter Fermer						

🔽 Tableau	récapitulat	if des rent	forcemer	nts									×
📝 Tirants (4)												
	Nom	Х	Y	Espacement horizo	Inclinaison/horizont	Largeur base de diffu	Angle de diffusi	TR	Longueur scel	Longueur libre	Règle de calcul	qs _{tirants} issus	RQS
1	Tirant 1	-34,840	435,000	5,000	25,000	2,000	20,00	1110,0	10,000	9,000	Tout ou rien	Abaques	1500,000
2	Tirant 2	-34,590	433,000	5,000	25,000	2,000	20,00	1110,0	10,000	5,000	Tout ou rien	Abaques	1500,000
3	Tirant 3	-32,340	431,500	5,000	25,000	2,000	20,00	1110,0	8,500	5,750	Tout ou rien	Abaques	1500,000
4	Tirant 4	-32,090	429,500	5,000	25,000	2,000	20,00	1110,0	8,500	5,750	Tout ou rien	Abaques	1500,000
						Copier	Exporter	Fermer					

D.11 Exemple 5 : soutenement (microberlinoise)

Cet exemple traite l'étude de la stabilité globale d'une fouille à réaliser, tenue par un soutènement provisoire de type microberlinoise constituée de micropieux verticaux tenus par un lit de tirants en tête et 3 lits de clous en partie inférieure.

К. Т	bleau réca	pitulatif	des renf	orcements																				×
1	lous (4)	/ Tire	ints (1)																					
	Nom	x	Y	Espaceme	Inclinaison	Largeur bas	Angle d	TR	Longu	Rsc	Rayon	Règle	Cisailement	Moment de	EI	Angle	Traction	Cisail	qs _{clous}	θ _{barre}	σ	Valeur de	Rsc calculée	Cisaillement varia
1	Clou 1	0,000	157,250	2,500	10,00	2,000	20,00	308,0	9,000	-	0,047	Tcal,Ci	0,000	-	-	0,000	Externe	-	Abaques	-	-	Oui	Oui	Non
2	Clou 2	0,000	155,000	2,500	10,00	2,000	20,00	402,0	9,000	-	0,047	Tcal,Ci	0,000	-	-	0,000	Externe	-	Abaques	-		Oui	Oui	Non
3	Clou 3	0,000	152,750	2,500	10,00	2,000	20,00	402,0	7,000	-	0,047	Tcal,Ci	0,000	-	-	0,000	Externe	-	Abaques		-	Oui	Oui	Non
4	Clou 4	-0,100	160,000	1,250	90,00	1,000	20,00	542,0	13,000	-	0,100	Tnul,Cca		283,000	2074,0	0,000		Externe	Abaques		-	Oui	Oui	
											Conio		Eventer	Formor										

D.12 Exemple 6 : stabilisation superficielle d'un talus

Cet exemple présente le confortement d'un talus en limite de stabilité dont la partie superficielle s'altère au cours du temps. Les caractéristiques des sols superficiels (décomposés en 2 couches) ont été calées sur la stabilité limite du talus existant.

🔽 Tableau	récapitulatif d	les couches d	e sol														×
Couche	s de sol (7)																
	Nom	Couleur	Y	φ	с	Δc	qs clous	pl	KsB	Anisotropie	Favorable	Coefficients de sécurité spécifi	Γ _γ	Г.	Γ _{tan(φ)}	Type de cohé	Courbe
1	Couche 1		20,0	30,00	23,0	0,0	80,0	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
2	Couche 2		21,0	30,00	45,0	0,0	120,0	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
3	Couche 3		21,0	30,00	150,0	0,0	160,0	4000,0	186000,0	Non	Non	Non	-	-	-	Effective	Linéaire
4	Couche 4		20,0	17,00	25,0	0,0	0,0	1000,0	15000,0	Non	Non	Non	-	-	-	Effective	Linéaire
5	Couche 5		20,0	30,00	0,0	0,0	0,0	750,0	19250,0	Non	Non	Non	-	-	-	Effective	Linéaire
6	Couche 6		18,0	25,00	0,0	0,0	-	-		Non	Non	Non	-	-	-	Effective	Linéaire
7	Couche 7		20,0	45,00	0,0	0,0		-		Non	Non	Non	-	-	-	Effective	Linéaire
									Store	ter Fran							

D.13 Exemple 7 : géotextile à la base d'un remblai sur sol mou

Cet exemple présente la réalisation d'un remblai sur un sol mou dont les 50 cm supérieurs ont été décapés et dont la stabilité est assurée par une nappe de géotextile.

La nappe de géotextile a été assimilée à des bandes de renforcement dont le mode de fonctionnement est similaire.

Le coefficient de frottement sol/armature a été mesuré et trouvé égal à $tan(\phi)$.

🔽 Tableau	ı récapitulatif	des couche	s de sol														×
Couche	es de sol (3)																
	Nom	Couleur	Y	φ	с	Δc	qs clous	pl	KsB	Anisotropie	Favorable	Coefficients de sécurité spé	Гу	г,	Γ _{tan(φ)}	Type de cohésion	Courbe
1	Couche 1		18,0	35,00	0,0	0,0	-	-	-	Non	Non	Non	-	-	-	Non drainée	Linéaire
2	Couche 2		15,0	0,00	23,0	0,0	-	-	-	Non	Non	Non	-	-	-	Non drainée	Linéaire
3	Couche 3		20,0	0,00	50,0	0,0	-	-	-	Non	Non	Non		-	-	Non drainée	Linéaire
								ł	Copier	Exp	orter F	ermer					

D.14 Exemple 8 : anisotropie de cohésion

Cet exemple traite la stabilisation d'un talus par un mur composé d'un matériau caractérisé par un angle de frottement et une anisotropie de cohésion.

D.15 Exemple 9 : courbe intrinsèque non linéaire

Cet exemple traite le calcul de stabilité d'un remblai sur un sol relativement mou qui présente une courbe intrinsèque non linéaire : la contrainte tangentielle est fonction de la contrainte normale mais pas linéaire.

🔽 Tablea	u récapitula	tif des cou	ches de sol														×
Coucl	nes de sol (3)															
	Nom	Couleur	γ	φ	с	Δc	qs clous	pl	KsB	Anisotropie	Favorable	Coefficients de sécurité	Гу	г,	Γ _{tan(φ)}	Type de co	Courbe
1	Couche 1		20,0	35,00	0,0	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
2	Couche 2		16,0	-	0,0	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Non linéaire
3	Couche 3		21,0	35,00	20,0	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
							ť	Copier	🛬 Expo	rter Fe	ermer						

D.16 Exemple 10 : fouille butonnée en zone sensible

Cet exemple traite le cas d'une fouille réalisée à proximité d'un bâtiment et contenue par 4 lits de butons provisoires en acier.

Couches	écapitulai	tif des couches de so	d													×
Couches	de sol (3)															
	Nom	Couleur Y	φ	с	Δc	qs clous	pl KsE	Anisotropie	Favorable	Coefficients de se	écurité sp	Г _v	г,	Γ _{tan(φ)}	Type de	cohé Courbe
1 C	Couche 1	19,0	30,00	0,0	0,0	-		Non	Non	Non		-	-	-	Effec	tive Linéaire
2 0	Couche 2	20,0	20,00	15,0	0,0			Non	Non	Non		-	-		Effec	tive Linéaire
3 0	Couche 3	21,0	25,00	20,0	0,0	-		Non	Non	Non		-	-	-	Effec	tive Linéaire
							04-	0								
							Copier	Texporte	r Fer	mer						
🔽 Tableau r	récapitula	atif des renforcemer	ts													×
2 Butons ((5)															
		Nom	X		Y		Espacemen	t horizontal	Inclinais	on/horizontale	Largeur	r base de	diffusion	Angle de d	diffusion	TR
1		Buton 1	0,000		9,000		2,5	00		0,000		2,000		20,0	00	500,0
2		Buton 2	0,000		7,000		2,5	00		0,000		2,000		20,0	00	500,0
3		Buton 3	0,000		5,000		2,5	00		0,000		2,000		20,0	00	500,0
4		Buton 4	0,000		3,000		2,5	00		0,000		2,000		20,0	00	500,0
5		Buton 5	0,000		1,000		2,5	00		0,000		2,000		20,0	00	500,0
							\$	8 6								
							Copier	Texport	er Fer	mer						
and a		Racco	arcis		Zo	oom			iutiks							Calcul
Fichier	Projet	Aide	🚔 💘 🔚		6 2	0 2	00	2 2 1	¥							ş. O 🗿 🖄
-30	-2	-20	-15 -10	-5	0	5	10	15	20	25 30	35		Arbonescence du	ornial -		
e +fichier e	vemple*	C	1			**		the the three states	A CONTRACT AND A CONT							
												>	-S# Situ	ation "1" [0,5	9979]	4
					- 24	67 7 7 1.99	145	1.1.1 1.01	1.06 1.22	125 121	- 116		−\$¥ <u>situ</u>	ation "1" [0,5	9979 J	3
					2,6	67 1,80	L45	1.11 1.01	1.16 1.27	1,45 1,22	1.15	*	Propriétés de la si	ation "1" [0,5	9979]	:
22					20	67 1,50	LAS	00	1.16 1.27	1.25 1.21	1.15	*	Propriétés de la si	ation "1" [0,5 uation	9979] •••••	3
22					20		1.45 (g) [2		1.16 1.27	125 127	1.15 17		Propriétés de la si A Retour F Résumé	uation 	9979) ••••• ésultats priétés d'affich	
2					20	67 1,90 7 / 0	1.45 (2)		1.16 1.27	12 13	7	•	Propriétés de la si Marcela Résumé Par surface	uation "1" [0,5 uation lésumé des ré Proj Par	9979) ésultats prétés d'affich renforcement	sge Par tranche
\$c					22	0 190 17			1,16 1,2 ⁰	4 40 • •	1.16 17 12		Propriétés de la si Retour F Résumé Par surface	ation <u>1" [0,3</u> uation ésumé des ré Proj Par	9979) ***** ésuitats priétés d'affich renforcement	sge Par tranche
20 · · · 25					22						1.15 17 122		Propriétés de la si * Résumé Par surface Surface critige	uation <u>"1" [0,5</u> uation ésumé des ri 9 Par <u>0 1</u>	9979) ésuitats priétés d'affich renforcement	age iii: Partranche
20			m	m	22	67 1.50					1.15 17 12 12		Propriétés de la si Propriétés de la si Résumé Par surface Surface critige Surface su Surface su	estion "1" [0,3 nation "1" [0,3 desumé des ri esumé des ri par par es ricodaire.	9979) ésultats priétés d'affich renforcement	sge iiii Partranche
15. 20. 25					22				1.00 1.37		1.15 47 1.2 1.2 1.2 1.2		Propriétés de la si Propriétés de la si Résumé Par surface Surface critige Surface su Surf - Nype de su Surf	eigen "1" [0,5 uation "1" [0,5 vésumé des ré Proj Proj Par 0:1 face : ace circulaire la surface :	9979) ésuitats priétés d'affich renforcement	sge i Partranche
15					24						1.15 17 12 1.29		Propriétés de la si Propriétés de la si Résumé Par surface Surface critigs Surface critigs Surface Numéro de Numéro de Numéro de Numéro de	etion "1" [0,5 vision "1" [9979) ésuitats priétés d'affich renforcement	age ig Partranche
15. 20. 25						27				12 12	225 27 22 20 20		Propriétés de la si Propriétés de la si Résumé Par surface Surface critige - Type de su Surf - Numéro de N° = - Abscisse d Xo =	uation "1" [0,5 uation "1" [0,5 uation "1" [0,5 uation "1" [0,5 Par Par Par 0: 1 ace ri- ace circulaire la surface : 54 u centre du ce 54 u centre du ce	9979) ésultats priétés d'affich renforcement rrcle :	sge Se Partranche
10						27 199 17 17 18 19 19 19			1.6 1.0	12 12	1.15 17 121 128		Propriétés de la si Résumé Résumé Par surface Type de su Surface critigs - Type de su Surface critigs - Type de su Surface critigs - Type de su Surface critigs - Cote du cei - Cote du cei	uston "1" [0.4 uston "1" [0.4 uston " Prop Prop Par 10:1 10:2 10	9979) ésultats prétés d'affich renforcement rcle : :	age Partranche
10 15 20 25		×							1.6 1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	14 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.25 27 2.25 2.29 2.99 2.99 2.99		Kitu	exercise and the second	9979) ésultats priétés d'affich renforcement rcle : :	age Par tranche
5 10 15 20 25		7	Ę						1,6 1,2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	28 12 4 12 12 12 12 12 12	2.25 27 22 200 200 200 200 200 200 200 200 2		- Set Strue - Set Strue - Set Strue - Set Strue - Resum - Resum - Resum - Resum - Type de su Surface critiqu - Surface critiqu - Auscisse - Cote du ce R -	estion "1" [0,4 estion "1" [0,4 estion "4" [0,4 estimation "4" [0,4] [0,	9979) ésultats priétés d'affich renforcement srcle : :	age iiii Partranche
5 10 15 20 35		•							1,16 1,27 7,19 7,19 7,19 7,19 7,19 7,19 7,19 7,1	147 147 	2.25 27 22 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1		Postitis de la si Postitis de la si Retour si Resumé Par surface Surface critige Type de su Surf Auméro de su N° - Abacisse de N° - Abacisse de la si Retour si Surface critige N° - Abacisse de la si N° - Rayon du c Rayon du c	estion "1" [0,4] uistion estimation des ri Proj Pr	9979) ésultats prétés d'affich renforcement recle : ; stion des con	ege Partranche
5 10 15 20 35		<u> </u>		K						125 121 	2.15 27 22 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1		- Set Stru	ustion "1" [0.4 visition "1" [0	9979) ***** ésultats priètés d'affich rentorcement srcle : : ation des com	age Partranche
9 5 10 15 20 25				K					10 17	125 120 	1.16 7 10 10 10 10 10 10 10 10 10 10 10 10 10		- Set Store - Set Store - Set Store - Resume - Resume - Resume - Type de su Surface critice - Type de su - 1% coefficie - 1% coefficie - 1% coefficie - 2 % coefficie	estion "1" [0,1 uaston ésumé des ri par estimation	9979	sge Par tranche rainles normales :
2 20 25 20 25		,									126 27 200 200 200 200 200 200 200 200 200		 Normation of the second second	e ano "1" [0,1 desumé des ré e Proy Par e Par e Par e Call face : ace circulaire la surface : 54 u centre du cercle : 24,00 m itre du cercle : 27,06 m nf de perfur 0,006 des résultats = 99 2%	9979	age Par tranche trainfes normales : Intrainfes normales :
<u> </u>		•								147 147 	2.25 27 2.20 2.00 0.00 0.00 0.00		H→Si ² Strue Proprietes de la si Propriétés de la si Propriétés de la si Propriétés de la si Parsurace Parsurace Surface critique - Type de su Surface critique - Type de su Surface critique - Coté du ce Que - Coté du ce	estion "1" [0,1 ustion ésumé des ruí par par 12.1 face : ace dirculaire la surface : 54 u centre du cer 12.50 m tré du cercle : 24.00 m ercle : 24.00 m ercle : 27.06 m nt de perfur 0.000 jean de perfur 0.0000 jean de perfur 0.000	9979 esuitats prétés d'affich renforcement rcle : : ation des con rbation des c ; inimal obten	ege Partranche traintes normales : intraintes normales :
		<u> </u>								125 121 4 125 129 125 129 149 149 149 149	2.45 7 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40			ustion	9979	age Partranche raintes normales : untraintes normales :
		<u> </u>								125 121 	2.45 7 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	2	H-Siri Strue Promoteles de la s Promoteles de	statom - 1* [0,1 ustion estatom - 1* [0,1 ustion estatom estom estatom es	esures esurtats prietes d'affich renforcement recle : : : atton des con rotation des con : : inimal obtenu ments :	ege Par tranche
0 5 6 5 0 5 0 3		,		K							2,25 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H→Si ² Situ Promities de la si Résumé Par surface Surface critiqu Par surface Surface critiqu Par surface Abscisse d Abscisse d Abscisse d Coté du ce y = - 14° comficié Naméro de la su Coté du ce y = - 14° comficié Naméro de la su Coté du ce y = - 14° comficié Naméro de la su Abscisse d Coté conte Conte centre Par surface Conte centre Conte centre Par surface Conte centre Conte	terrine 1 (0,1	esytes d'article esuttats prétés d'article renforcement recte : : : : : : : : : : : : : : : : : : :	age Par tranche

de de calcul : Perturbations coefficients de sécurité : Clouterre Fondamental / Ouvrage sensible = 0,9979

Copie d'écrar

te de la géométrie

434,780

434,780

434,780

Buton 3

Buton 4

Bu

Calcul:

D.17 Exemple 11 : barrage avec approche de l'écoulement

Cet exemple présente la vérification de la stabilité d'un barrage en terre au sein duquel nous avons modélisé l'écoulement en approximant les lignes équipotentielles par des droites (inclinées des angles indiqués sur le schéma ci-dessous par rapport au toit de la nappe).

D.18 Exemple 12 : stabilité d'une culée en terre armée

Cet exemple présente le cas d'une culée en Terre Armée pour laquelle nous avons vérifié la stabilité pour les cercles passant sous la fondation des écailles du massif en Terre Armée, la stabilité interne propre du massif en Terre Armée faisant l'objet de recommandations spécifiques. Les coefficients de frottement sol/armatures sont ceux proposés dans les recommandations Terre Armée.

🔽 Tableau	récapitulatif	des couches	de sol														×
💽 Couche	s de sol (5)																
	Nom	Couleur	Y	φ	с	Δc	qs clous	pl	KsB	Anisotropie	Favorable	Coefficients de sécurité spéci	Γ _v	г,	Γ _{tan(φ)}	Type de cohé	Courbe
1	Couche 1		20,0	36,00	0,0	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
2	Couche 2		20,0	36,00	0,0	0,0			-	Non	Non	Non	-	-	-	Effective	Linéaire
3	Couche 3		18,0	25,00	15,0	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
4	Couche 4		20,0	35,00	10,0	0,0			-	Non	Non	Non			-	Effective	Linéaire
5	Couche 5		20,0	36,00	0,0	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire

Fermer

🏪 Copier 🛛 🛬 Exporter

Propriétés du projet-	
🔄 Retour Sur	charges
Surcharges répartie	es (3) Surcharges linéaires et moments (1)
Charge linéaire 1	
Surcharge linéaire	e individuelle
Nom	Charge linéaire 1
X (m)	-1,400
Y (m)	2,750
Q (kN)	-100,000
Angle (°)	0,00
Diffusion	
Largeur base (m)	1,000
Angle (°)	20,00
M (kN.m)	-375,000

Retour Rento	rcements		
Clous Tirants Bar	ndes (4) Butons		
🍓 Bandes et fami	lles du projet (4)	+ < **	11.
Bande 1			
Bande individuelle			
Nom	Bande 1		
X (m)	0,000	Y (m)	2,40
Longueur (m)	7,000	Larg. (m)	0,05
Espacement (m)	0,500	Angle (°)	0,0
Diffusion			
Largeur base (m)	0,500	Angle (°)	20,0
TR (kN)	50,00		
Y _{remblai} (kN/m ³)	18,0		
Type de pond.	Minorateur (< 1) 🗸	
Cal. de traction	Externe	~	
Ho*	1.50	μ.*	0,7

D.19 Exemple 13 : calage des caractéristiques sur une surface de rupture

Cet exemple présente l'analyse à la rupture d'un glissement pour lequel nous recherchons à caler les caractéristiques mécaniques d'une couche de sol qui est le siège d'une surface de rupture connue. Nous avons défini dans cet exemple les pressions interstitielles le long de la surface de rupture.

D.20 Exemple 14 : paroi moulée avec 2 nappes d'eau

Cet exemple traite le cas de la stabilité d'une paroi moulée ancrée par un lit de tirants provisoires. Nous avons imposé aux surfaces circulaires de passer sous la fiche de la paroi. La stabilité et le dimensionnement propre de la paroi et la définition de la traction de service des tirants ont été déterminés par un calcul préalable de paroi en élastoplasticité.

Ce calcul en rupture circulaire permet de définir la longueur utile des tirants qui ne peut être définie par un calcul de paroi en élastoplasticité et de vérifier que la fiche est suffisante pour les conditions de stabilité au grand glissement. Certains cas demandent aussi de considérer les surfaces de rupture non circulaires passant à l'arrière du point d'ancrage fictif des tirants (pour Talren, le point d'ancrage fictif se situe au milieu du scellement) et sous le pied de paroi.

Dans cet exemple, nous traitons, avec des valeurs de pressions interstitielles données aux nœuds d'un maillage triangulaire, le cas particulier de deux nappes dont les niveaux hydrostatiques sont différents, les pertes de charges s'effectuant dans la couche de sol intermédiaire peu perméable.

🚯 Couc	hes de sol (3)															
	Nom	Couleur	γ	φ	с	Δc	qs clous	pl	KsB	Anisotro	Favorable	Coefficients de sécurit	Γ _γ	Г _с	Γ _{tan(φ)}	Type de c	Courbe
1	Couche 1		20,0	30,00	10,0	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
2	Couche 2		20,0	25,00	15,0	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
3	Couche 3		20,0	35,00	10,0	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
							1	Copier	🋬 Expo	rter F	ermer						

🔄 Ret	our Noeuds et	triangles				
Noeuds	Triangles Prop	oriétés d'aff	ichage			
				÷	íi 🛍	
N°	X (m)		Y (m)		u (kPa)	
1	-40,0	00	19	9,000		0,00
2	-30,3	30	19	9,000		0,00
3	-6,2	:50	12	2,500		0,00
4	0,0	00	12	2,500		0,00
5	40,0	00	12	2,500		0,00
6	0,0	00	10	0,000		25,00
7	40,0	00	5	5,000		75,00
8	0,0	00	5	5,000	1	40,00
9	40,0	00	(0,000	1	90,00
10	-40,0	00	-6	5,000	2	40,00
11	0,0	00	-5	5,000	2	240,00
12	40,0	00	-5	5,000	2	40.00

X

D.21 Exemple 15 : soutènement cloué

Cet exemple traite le cas d'un ouvrage cloué en situation sismique. Le séisme est défini par les rapports d'accélérations horizontal et vertical $(a_h/g \text{ et } a_v/g)$.

🔽 Tablea	u récapitula	atif des cou	ches de sol														×
Couci	hes de sol (2)															
	Nom	Couleur	Y	φ	с	Δc	qs clous	pl	KsB	Anisotropie	Favorable	Coefficients de sécurité s	Гу	Го	Γ _{tan(φ)}	Type de co	Courbe
1	Couche 1		20,0	35,00	5,0	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
2	Couche 2		20,0	30,00	10,0	0,0	120,0	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
							Ť	Copier	🐮 Ехро	orter F	ermer						

V Séisme	ab/o	0 120
	an/g	0,120

	al 4 9	Raccourcis		Zoom	0.173	Outlis			Calcul		
	Fichier Projet Aide	🕒 😐 💌 🖻		2 2 2	2 2 2	18 A			244 H	0 4	2
30 35	-20 -25 *fichier exemple*	-20	1510		9	. 5 10 15	 Arborescence d Surch Renfor Phase Sig Alo Alouter	projet rges (1) sements (4) Phase" ation "1" [1,0309] ation "2" [1,0305] Ider une nouvelle situ une nouvelle phase tratoo	ation		Î
\$2					/		Relour Résumé Par surface Surface critiq	lésumé des résultat Propriétés d Par rentorou IE :	s Inffichage ement Pa	r tranche	1
15 20		ļ ,					 - Type de sa Sur - Numéro d N* - Abscisse e X ₀ : - Cote du cr Y ₀	rface : ace circulaire la surface : 24 u centre du cercle : 12,50 m ntre du cercle : 35,00 m			
10							- Rayon du R = - Moment m M _M - Coefficien F _{mi} - Efforts dar	ercle : 35,20 m steur : ₂₁ = 46447 kN de sécurité minimal e = 1,0309 s les renforcements	oblenu :		
2	Méthode de calcul : Bishop Jeu de coefficients de sécurité : Cl Fmin = 1,0309	outerre Accidentel / Ou	vrage courant	->				Nom Longueur utile Dou 1 1,450 Dou 2 3,690	Résistance r 54,58 138,9	naximale 0 70	
								lou 3 5,760	217.0	50	
	Création directe de la géométrie	Copie d'écran					[clou 4 7,270	274,2	10	Ļ

D.22 Exemple 16 : stabilité d'un quai en cylindres de béton

Cet exemple présente le cas d'un quai réalisé en cylindres de béton fermés au fond et remplis de remblai compacté.

Nous avons retenu le cas le plus défavorable en considérant le niveau d'eau maximum à l'intérieur des terres et minimum à l'extérieur.

🔽 Table	au récapitu	latif des co	uches de s	ol														×
Cour	ches de sol (4)																
	Nom	Couleur	Y	φ	с	Δc	qs clous	pl	KsB	Anisotro	Favorable	Coefficients de sécurit	Гу	г。	Γ _{tan(φ)}	Type de c	Courbe	
1	Couche 1		20,0	30,00	15,0	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire	^
2	Couche 2		20,0	30,00	0,0	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire	
3	Couche 3		20,0	0,00	1000,0	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire	
4	Couche 4		20,0	45,00	0,0	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire	~
							1	Copier	🔭 Exp	orter	Fermer							

D.23 Exemple 17 : stabilisation d'un glissement par pieux

Cet exemple présente le cas d'un remblai sur une pente instable confortée par 3 files de pieux, assimilés dans Talren à des clous verticaux travaillant au cisaillement.

Les caractéristiques intrinsèques des sols ont été préalablement calées sur la rupture.

Le but a été d'obtenir un gain de sécurité de 20 à 30 % par rapport à la rupture.

🔽 Tablea	u récapitula	tif des cou	ches de sol														×
Couch	nes de sol (4																
	Nom	Couleur	γ	φ	с	Δc	qs clous	pl	KsB	Anisotropie	Favorable	Coefficients de sécurité s	Гу	г。	Γ _{tan(φ)}	Type de co	Courbe
1	Couche 1		19,0	25,00	0,0	0,0	0,0	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
2	Couche 2		19,0	13,00	0,0	0,0	0,0	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
3	Couche 3		19,0	10,00	0,0	0,0	0,0	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
4	Couche 4		20,0	35,00	20,0	0,0	0,0	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
														·			
							1	Copier	🛬 Expo	orter F	ermer						

V .	lableau ré	capitula	tif des r	enforceme	ents																			×
7	Clous (3)																							
	Nom	x	Y	Espace	Inclinais	Largeur b	Angle	TR	Long	Rsc	Rayon	Règle	Cisailleme	Moment d	EI	Angl	Tracti	Cisaill	qs _{clous}	θ _{barre}	σ	Valeur d	Rsc calcul	Cisaillement v
1	Clou 1	-62,000	22,000	2,400	90,00	1,000	20,00	0,0	16,000	-	1,000	Tcal,	540,000	-	-	0,000	Externe	-	Abaques	-	-	Oui	Oui	Non
2	Clou 2	-59,600	21,750	2,400	90,00	1,000	20,00	0,0	16,000	-	1,000	Tcal,	540,000	-	-	0,000	Externe	-	Abaques	-	-	Oui	Oui	Non
3	Clou 3	-57,200	21,500	2,400	90,00	1,000	20,00	0,0	16,000	-	1,000	Tcal,	540,000	-	-	0,000	Externe	-	Abaques	-	-	Oui	Oui	Non
		•																						·
										1	Copier		Exporter	Fermer										

D.24 Exemple 18 : stabilisation d'un remblai sur sol mou par micropieux

Nous traitons dans cet exemple la confortation d'un remblai sur un sol très compressible par la mise en place de 5 files de micropieux, assimilés dans Talren à des clous travaillant en compression et cisaillement.

Les caractéristiques intrinsèques des sols ont été préalablement calées sur la rupture.

Le but a été d'obtenir une sécurité accrue de 30 % par rapport à l'état d'origine sans renforcement.

action favorable pour la couche n°2

										\backslash							
🔽 Tablea	u récapitulat	if des couch	ies de sol														×
Couch	nes de sol (5)																
	Nom	Couleur	Y	φ	с	Δc	qs clous	pl	KsB	Anisotropie	avorable	Coefficients de sécurité sp	Γ _v	Г.	Γ _{tan(φ)}	Type de coh	Courbe
1	Couche 1		18,0	30,00	0,0	0,0	40,0	400,0	8800,0	Non	Non	Non	-	-	-	Effective	Linéaire
2	Couche 2		16,0	0,00	6,0	0,0	-	-	-	Non	Oui	Non	-	-	-	Effective	Linéaire
3	Couche 3		16,5	10,00	12,0	0,0	20,0	80,0	200,0	Non	Non	Non	-	-	-	Effective	Linéaire
4	Couche 4		17,0	10,00	20,0	0,0	20,0	140,0	240,0	Non	Non	Non	-	-	-	Effective	Linéaire
5	Couche 5		20,0	35,00	0,0	0,0	80,0	800,0	17000,0	Non	Non	Non	-	-	-	Effective	Linéaire
							٩	Copier	🛬 Expo	rter Fe	rmer						

Nom	Long. (m)	Esp./ horiz. (m)	Incl./ horiz. (°)	Rayon équiv. Scellement (m)	Règle de calcul	Rcis (kN)	TR (kN)	Mmax (kN.m)	El (kN.m ²)
Clou 1	13.0	3.0	110.0	0.166	Tcal, Ccal	-1110	-2220	183	7644
Clou 2	13.0	3.0	95.0	0.083	Tcal, Ccal	-1110	-2220	183	7644
Clou 3	13.0	3.0	90.0	0.083	Tcal, Ccal	-1110	-2220	183	7644
Clou 4	13.0	3.0	85.0	0.083	Tcal, Ccal	-1110	-2220	183	7644
Clou 5	13.0	3.0	70.0	0.166	Tcal, Ccal	-1110	-2220	183	7644

D.25 Exemple 19 : soutènement sur pente

Cet exemple présente le cas d'un soutènement sur versant dont l'angle de la pente est proche de l'angle de frottement interne du sol. Dans ces conditions et pour les grandes surfaces de glissement, il n'est généralement pas possible d'améliorer la stabilité pour atteindre les sécurités usuellement retenues, par la seule présence d'un ouvrage renforcé.

L'approche traditionnelle consiste à rechercher les sécurités au glissement conventionnellement retenues en limitant l'émergence amont et aval des surfaces de rupture à 3H (H = hauteur maxi entre celle de l'ouvrage et celle du terrassement au droit de l'ouvrage).

Une seconde approche est possible avec la différenciation des coefficients de sécurité et ceci notamment au niveau des caractéristiques des sols (méthode ELU). Elle consiste à appliquer les coefficients de sécurité usuels à l'intérieur de la zone renforcée, et ceux, corrigés du coefficient de méthode Γ_{s3} , caractérisant l'état de stabilité naturelle de la pente avant travaux dans l'environnement de l'ouvrage. Cette méthode revient à dimensionner l'ouvrage en s'assurant que la stabilité en grand glissement n'est pas affectée par ce dernier. La pente présente un angle de 30° par rapport à l'horizontale, soit pour un angle de frottement de 35°, une sécurité à l'état naturel de 1,213. Nous avons par conséquent retenu, pour le sol environnant l'ouvrage, une valeur de Γ_{ω} égale à 1,21/ Γ_{s3} soit 1,078.

D.26 Exemple 20 : ouvrage tiranté

Cet exemple présente la possibilité de la prise en compte de la résistance de scellement des tirants avec un effort d'arrachement déterminé automatiquement par Talren au prorata de la longueur scellée.

🔽 Tablea	u récapitulat	if des couch	nes de sol														×
Couch	es de sol (7)																
	Nom	Couleur	γ	φ	с	Δc	qs clous	pl	KsB	Anisotropie	Favorable	Coefficients de sécurité s	Γ _γ	Г _с	Γ _{tan(φ)}	Type de coh	Courbe
1	Couche 1		19,0	25,00	10,0	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
2	Couche 2		19,0	35,00	10,0	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
3	Couche 3		19,0	35,00	20,0	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
4	Couche 4		19,0	36,00	30,0	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
5	Couche 5		20,0	40,00	200,0	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
6	Couche 6		17,0	30,00	20,0	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
7	Couche 7		0,0	0,00	0,1	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
							8	Copier	🛬 Expo	rter Fe	rmer						

D.27 Exemple 21 : remblai sur sol de cohésion variable avec la profondeur

Le cas présenté est un remblai sur un sol dont la cohésion varie avec la profondeur (sol 2).

🔽 Tablea	u récapitula	tif des cou	uches de so	I													×
Couci	nes de sol (3)															
	Nom	Couleur	Y	φ	с	Δc	qs clous	pl	KsB	Anisotro	Favorable	Coefficients de sécurité	Гу	г	Γ _{tan(φ)}	Type de co	Courbe
1	Couche 1		19,0	35,00	0,0	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
2	Couche 2		18,0	0,00	60,0	5,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
3	Couche 3		20,0	35,00	20,0	0,0	-	-	-	Non	Non	Non	-	-	-	Effective	Linéaire
							1	Copier	🔭 Expo	rter F	ermer						

D.28 Exemple 22 : stabilisation par pieux avec cisaillement variable

Les valeurs de cisaillement ont été déterminées à l'aide du logiciel **Foxta** (**Piecoef+**), en imposant un champ de déformation sur la hauteur égale à celle de l'inclusion au-dessus de la surface de rupture. Pour chaque niveau de calcul, Foxta permet de déterminer l'effort de cisaillement réellement mobilisable dans l'inclusion fichée dans un multicouche.

Profilés: HEB 300 sur 2 files (T_e=240 MPa). Entraxe=2m

B= 300 mm EI = 52 850 kN.m² M_{plast}= 400 kN.m

Cisaillement clou n°2

D.29 Exemple 23 : coefficient ru

Cet exemple illustre la prise en compte du coefficient r_u pour définir la pression d'eau à tout point appartenant à une couche de sol en fonction de la contrainte verticale : $u = r_u \cdot \gamma h$.

🔄 Retour	ru par couche				
	Remise à zéro de tous	s les coefficients ru			
No	m de la couche	ru			
	Couche 1	0,50			
	Couche 2	0,50			

D.30 Exemple 24 : construction d'un mur d'autoroute

Cet exemple illustre un calcul phasé : 6 phases provisoires + 1 phase définitive. D'autre part, plusieurs types de surface de rupture ont été étudiés pour chaque phase.

Voici quelques exemples de résultats obtenus :

• Phase 1 / Situation 1 : recherche automatique, point de passage en pied de mur

• Phase 1 / Situation 2 : recherche automatique, cercles tangents à la couche 3

- Raccources Calcul 🗞 🏷 🦄 🖄 () Alde Proje -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 ^ *fichier exemple* ş étés de la situation -Retour Résumé des résultats 745 🚽 Propriétés d'affichi Résumè 14 - Par renforcement 740 Surface critique : - Type de surface Surface circulaire - Numéro de la surface N* = 76 - Abscisse du centre du cercle $x_0 = 13,72$ m - Cole du centre du cercle Y₀ = 744,31 m Rayon du cercle R = 42,60 m - 1^{er} coefficient de perturbation des contraintes normales $\lambda = 0.999$
 Nom
 Longueur utile
 Résistance mail

 Clou 1
 0,000
 0,000
 0,000 0,000 0,000 Ciou 2 Méthode de calcul : Perturbations Jeu de coefficients de sécurité : Clouterre Fond/courant prov Fmin = 1,3968 Clou 3 2,000 47,250 06 Clou 4 0,000 0,000 te de la géométrie Tirant 1 6,000 408,000 A 6 6 Tirant 2 6,000 408,000
- Phase 3 / Situation 1 : recherche automatique, point de passage en pied de mur

 Phase 3 / Situation 2 : recherche automatique, point de passage en pied de talus SNCF

• Phase 6 / Situation 1 : recherche automatique, point de passage en pied de mur

 Phase 6 / Situation 2 : recherche automatique, point de passage en pied de talus SNCF

Phase 7 (définitive) / Situation 1 : recherche automatique, point de passage en pied de mur

Phase 7 (définitive) / Situation 2 : recherche automatique, point de passage en pied de talus SNCF

