Le défi de l'ingénierie géotechnique face à la généralisation des modèles numériques

Fahd Cuira Terrasol

terraso

Juin 2017

- Apports des modèles numériques dans l'identification des mécanismes de ruine et d'interaction
- Choix des paramètres : la question des modules
- Les couplages hydro-mécaniques
- Quels modèles pour l'avenir ?

raso

Apports des modèles numériques

⇒ Massif de sol « explicitement » pris en compte

⇒ Exemple d'une paroi clouée

⇒ Exemple d'une paroi clouée : analyse de stabilité « classique »

⇒ Exemple d'une paroi clouée : analyse de stabilité par éléments finis

 \Rightarrow Exemple d'une paroi clouée : mécanismes multi-blocs

⇒ Exemple d'une paroi clouée : calcul à la rupture multi-blocs

⇒ Exemple d'une paroi clouée : calcul à la rupture multi-blocs

⇒ Stabilité du massif d'ancrage d'un écran tiranté

Solscope 2017 - Géotechnique et transition numérique

Faire découvrir le mécanisme de ruine

⇒ Stabilité du massif d'ancrage d'un écran tiranté

⇒ Stabilité du massif d'ancrage d'un écran tiranté

Fouille butonnée : prise en compte de l'interaction des « cônes » de butée

• Représentation réaliste des effets d'interaction sol/fondation

Représentation réaliste des effets d'interaction sol/fondation

la fibre supérieure du radier alors que c'est la fibre inférieure qui est tendue ici... ce constat est valable quelque soit la valeur du « ressort »

terraso

• Interaction entre ouvrages voisins : construction simultanée

terrasol

• Interaction entre ouvrages voisins : construction simultanée

• Interaction entre ouvrages voisins : construction en deux phases

terrasol

• Interaction entre ouvrages voisins : construction en deux phases

terrasol

• Effets de groupe entre pieux : cas d'un pieu situé en partie courante

• Effets de groupe entre pieux : « assouplissement » apparent des pieux

• Effets de groupe entre pieux : « assouplissement » apparent des pieux

• Effets de groupe entre pieux : impact selon position et contraste DDC

• Le module est fonction du niveau de déformation (induite par l'ouvrage)

La question des modules Exemple d'une semelle isolée : première estimation (brutale) [*10⁻³ m] 2.00 0.00 V = 300 kN/ml-2.00-4.00 -6.00 -8.00 -10.00 -12.00-14.00 -16.00 $E = E_M/\alpha$ -18.00 -20.00-22.00 -24.00 -26.00-28.00 -30.00 -32.00 -34.00 -36.00 Tassement de 3,5 cm pour E = E_M/α

• Exemple d'une semelle isolée : confrontation au modèle pressiométrique

• Exemple d'une semelle isolée : constat du taux de déformation

• Réponse d'un pieu isolé : confrontation au modèle de Frank et Zhao

• Le cas d'un écran de soutènement : REX station d'épuration à Colombes

• Fondation de deux immeubles de grande hauteur : étude de sensibilité

Modèle numérique (éléments finis 3D)	Modèle analytique (Boussinesq)	Rapport des résultats	
5,2 cm	5,5 cm	1,06	
6,0 cm	6,5 cm	1,08	
7,5 cm	8,5 cm	1,13	
12,0 cm	14,2 cm	1,18	
	Modèle numérique (éléments finis 3D) 5,2 cm 6,0 cm 7,5 cm 12,0 cm	Modèle numérique (éléments finis 3D)Modèle analytique (Boussinesq)5,2 cm5,5 cm6,0 cm6,5 cm7,5 cm8,5 cm12,0 cm14,2 cm	

En affinant le choix du « modèle » : marge de 5 à 20% En affinant le choix du « module » : rapport de 1 à 3 sur le résultat !

terrasol

 \Rightarrow Excavation avec rabattement de nappe

⇒ Excavation avec rabattement de nappe : intérêt des CPT

⇒ Excavation avec rabattement de nappe : calcul régime d'écoulement

⇒ Excavation avec rabattement de nappe : calcul régime d'écoulement

⇒ Excavation avec rabattement de nappe : calcul régime d'écoulement

⇒ Excavation avec rabattement de nappe : étude de sensibilité

Type de calcul	Contraste perméabilités	Gradient hydraulique	Flèche (cm)	Moment (kNm/ml)	Sécurité
Hydrostatique		i = 0	3,5	700	2,2
Ecoulement	$k_1 = k_0$	i = 0,28	4,0	800	1,8
	$k_1 = 0,2 \times k_0$	i = 0,60	8,5	1000	1,3
	$k_1 = 0,1 \times k_0$	i = 0,85	> 30	>1300	< 1

Etablir une estimation par excès de la perméabilité ne nous place PAS nécessairement du côté de la sécurité

terrasol

Améliorer l'état de la pratique en matière de choix des modules à partir du pressiomètre (PN ARSCOP)

Solscope 2017 – Géotechnique et transition numérique

Quels modèles pour l'avenir ?

• Importance des études de sensibilité

terrasol

Solscope 2017 – Géotechnique et transition numérique

• Développement de modèles « hybrides » : radiers et dallages

• Développement de modèles « hybrides » : radiers et dallages

Développement de modèles « hybrides » : groupe de pieux .

• Développement de modèles « hybrides » : écrans de soutènement

Le défi du géotechnicien

- Garantir une continuité avec les approches semi-empiriques => améliorer état de la pratique en matière de choix de paramètres (ex. PN ARSCOP)
- Faire parler les modèles au-delà des données d'entrée : études de sensibilité / notion de diagramme d'interaction
- Opportunité des modèles « hybrides » : perfectionnement (dans la continuité) des approches de dimensionnement usuelles

raso

Merci pour votre attention

