

PART G: PIECOEF+ MODULE

G.1.	INTRODUCTION	. 5
G.2.	THEORETICAL ASPECTS	. 6
	G.2.1. Pile modelling	6
	G.2.2. Modelling of soil reaction	7
	G.2.3. Implementation	8
	G.2.4. Buckling calculation G.2.4.1. Introduction G.2.4.2. Formulation G.2.4.3. Taking 2nd order displacements into account	9 9 9 11
	G.2.5. Taking shear force displacements into account	13
G.3.	USER'S MANUAL	14
	G.3.1. Pile management	14
	G.3.2. "Parameters" tab G.3.2.1. "Calculation type" box G.3.2.2. "Calculation parameters" box	15 15 18
	G.3.3.1. "Soil layers definition" box G.3.3.2. "Pile discretisation" box	20 21 22
	G.3.4. "External loads on pile" tab	24
	G.3.4.1. "Point loads normal to the pile" box	24
	G.3.4.2. Prescribed displacements at pile head box	20 27
	G.3.4.4. "Distributed loads normal to the pile" box	29
	G.3.5. "Free g(z) soil displacement " tab G.3.5.1. "Free g(z) soil displacement" box G.3.5.2. g(z) wizard using Eurocode 7 G.3.5.3. Import wizard for a Piecoef+ displacement	30 31 31 34
	G.3.6. "Initial displacement of pile $y_0(z)$ " tab	35
	G.3.7. Calculation and Results G.3.7.1. Calculation G.3.7.2. Results G.3.7.3. Results for multiple loads at pile head	36 36 36 42

G.4.	EXAMPLES OF PIECOEF+ CALCULATIONS	45
	 G.4.1. Example 1: Calculation of a pile submitted to (T, M) loading at pile hea G.4.1.1. Step 1: Vertical pile and elastic behaviour of the soil G.4.1.2. Data input G.4.1.3. Calculation and results G.4.1.4. Step 2: Elastoplastic soil G.4.1.5. Step 3: Inclined pile case 	d . 45 45 51 56 60
	 G.4.2. Example 2: Pile submitted to a lateral displacement g(z) of soil G.4.2.1. Step 1: Elastoplastic behaviour and g(z) curve G.4.2.2. Data input G.4.2.3. Calculation and Results G.4.2.4. Calculation variant with a more flexible pile G.4.2.5. Step 2: Manual input of mobilisation law 	63 63 70 72 74
	G.4.3. Example 3: Calculation of a metallic shaft under multiple loads at head G.4.3.1. Data input G.4.3.2. "Parameters" tab G.4.3.3. "Soil/Pile" tab G.4.3.4. "External loads on pile" tab G.4.3.5. "Free g(z) soil displacement" tab G.4.3.6. Calculation and Results G.4.3.7. Step 2: Considering shear force displacements	I78 78 80 81 82 83 83 83
	G.4.4. Example 4: Buckling and 2nd order: study of buckling of a micro-pile.G.4.4.1. Step 1: Buckling calculationG.4.4.2. Step 2: Quantification of 2nd order effects under the effect of a transverse load	91 92 97

TABLE OF FIGURES

Figure G.2: Lateral reaction mobilisation lawFigure G.3: BucklingFigure G.4: Buckling modes and associated critical loads	7 9 10 11 14
Figure G.3: BucklingFigure G.4: Buckling modes and associated critical loads	9 10 11 14
Figure G.4 : Buckling modes and associated critical loads	10 11 14
	11
Figure G.5 : 2nd order displacement under an axial load	14
Figure G.6 : Management of piles in Piecoef+ module	
Figure G.7 : "Parameters" tab	15
Figure G.8 : Soil lateral reaction mobilisation law: "from pressuremeter data (elastic)"	16
Figure G.9 : Soil lateral reaction mobilisation law: "from pressuremeter data (elastoplatic)"	16
Figure G.10 : Soil lateral reaction mobilisation law: "by manual input with 2 plateaux"	17
Figure G.11 : Soil lateral reaction mobilisation law: "by manual input with 3 plateaux"	18
Figure G.12 : Load incrementation	19
Figure G.13 : "Soil/Pile" tab	20
Figure G.14 : Help diagram illustrating the parameters of the 3-plateau "manual" behaviour law	22
Figure G.15 : Values k to be considered for calculation of reduced section S' for several current	
cases	23
Figure G.16 : "External loads on pile" tab	24
Figure G.17 : "External loads on pile" tab – Point loads normal to the pile	25
Figure G.18 : Load definition help	25
Figure G.19 : "External loads on pile" tab – Prescribed displacements at pile head	26
Figure G.20 : "External loads on pile" tab – Multiple loads at the pile head	27
Figure G.21 : Load cases import from Groupie+ wizard	28
Figure G.22 : "External loads on pile" tab – Distributed loads normal to the pile	29
Figure G.23 : Example of development of a free g(z) displacement	30
Figure G.24 : "Free g(z) soil displacement" tab	30
Figure G.25 : Graphical representation of the free g(z) displacement	31
Figure G.26 : g(z) function - Curves 1 and 2 as defined in Eurocode 7	32
Figure G.27 : g(z) wizard using the Eurocode 7	32
Figure G.28 : Import wizard for a Piecoef+ displacement	34
Figure G.29 : Graphical representation of the initial $y_0(z)$ displacement	35
Figure G.30 : Results window	36
Figure G.31 : Formatted numerical results (reminder of data)	37
Figure G.32 : Formatted numerical results (start of results section)	38
Figure G.33 : Formatted numerical results (start of results section for a buckling calculation)	39
Figure G.34 : Numerical results – Table of results	39
Figure G.35 : Graphical results – Main curves	40
Figure G.36 : Groupie+ parameters	41
Figure G.37 : Graphical results: Curves related to buckling	41
Figure G.38 : Formatted numerical results for a multiple load case at pile head	42
Figure G.39 : Table of results for a multiple load at pile head case	43
Figure G.40 : Main curves for a multiple loads at pile head case	44

TABLE OF TABLES

Table G.1	: "Parameters" tab: "Calculation parameters" box	18
Table G.2	: "Parameters tab: "Load incrementation"	19
Table G.3	: "Soil/Pile" tab: "Soil layers definition" box	21
Table G.4	: "Soil/Pile" tab: "Soil layers definition" box – Data required according to type of	
	calculation chosen	22
Table G.5	: "Soil/Pile" tab: "Pile discretisation" box	23
Table G.6	: "External loads on pile" tab: "Point loads normal to the pile" box	25
Table G.7	: "External loads on pile" tab: "Prescribed displacements at pile head" box	26
Table G.8	: "External loads on pile" tab: "Multiple loads at the pile head" box	27
Table G.9	: "External loads on pile" tab: "Distributed loads normal to the pile" box	29
Table G.10	: "Free g(z) soil displacement" tab "Free g(z) soil displacement" box	31
Table G.11	: g(z) wizard: "Definition of compressible horizon" box	33
Table G.12	: g(z) wizard: "Dimensionless definition" box	33
Table G.13	: g(z) wizard: "Amplitude" box	33
Table G.14	: "Free g(z) soil displacement" tab "Free g(z) soil displacement" box	35

G.1. Introduction

Piecoef+ module is used to model, in a refined manner, the behaviour of a single pile submitted to transverse loads on the basis of a beam model on elastoplastic supports ("p-y" type model).

Figure G.1 : Piecoef+ model

It applies to the case of a variable inertia pile, in multilayer soil with elastoplastic behaviour under various loading conditions.

It allows the plastification of the soil, a free displacement of "g(z)" type and the contribution of shear force displacements to be taken into account.

The used method also allows the critical buckling forces as well as additional forces and 2nd order displacements to be assessed under an axial force.

Lastly, Piecoef+ allows the stiffness matrix at pile head to be calculated, which can for instance constitute the preliminary step of a Groupie+ calculation for a pile group.

G.2. Theoretical aspects

G.2.1. Pile modelling

The pile is considered as a beam with linear elastic behaviour. We consider the case of beams with uniform cross-sections which allows bending behaviour to be dissociated from the tensile/compression behaviour.

Bending behaviour of the beam representative of the pile can be addressed using the socalled Bernoulli model which consists in neglecting the contribution of the shear force displacements. With this assumption, the combination of the balance and behaviour equations gives the following general equation:

$$EI\frac{d^{4}y(z)}{dz^{4}} = q(z) - r(z)$$
(1)

Where:

- y(z) lateral displacement of the pile
- EI(z) product of inertia
- q(z) transverse load density on the pile (other than soil reaction)
- r(z) soil reaction density

This equation can be solved numerically by discretising the pile into beam finite elements. To this aim, we use "conventional" elements with 2 nodes and 4 degrees of freedom: two displacements and two rotations. At any points, the rotation of the beam coincides with the lateral displacement field derivative (Bernoulli approximation). In the context of this discretisation, the balance of the pile is represented by an equivalent matrix system of size $2(p+1) \times 2(p+1)$ where p refers to the total number of elements:

$$\mathbf{K}^{\mathrm{e}}.\mathbf{y} = \mathbf{F}^{\mathrm{ext}} - \mathbf{R}^{\mathrm{s}} \tag{2}$$

Where:

- $K^{\mbox{\scriptsize e}}$: stiffness matrix of the pile consisting of the assembly of elementary stiffness matrices;
- ${\bf F}^{\text{ext}}$: load vector related to the transverse loads on the pile other than the soil reaction;
- **R**^s : load vector related to soil reaction;
- **y** : equivalent displacement vector consisting of the displacement and rotation at each node.

G.2.2. Modelling of soil reaction

Each layer of soil is considered as a distribution of adjacent springs with elastoplastic behaviour according to a mobilisation law with three plateaux as shown on the figure below.

Figure G.2 : Lateral reaction mobilisation law

As shown on the above figure, the lateral reaction mobilisation law is expressed versus the <u>relative</u> displacement of the pile with respect to the soil. This allows the case of a free displacement g(z) developing in one or more layers of the soil to be directly processed. According to the notations of the above figure, the lateral reaction of the soil r(z) is expressed as follows:

$$r = \alpha [y - g] + \beta$$

Where:

- For the 1st plateau: $\alpha = Es_1$ & $\beta = 0$;
- For the 2nd plateau: $\alpha = Es_2$ & $\beta = p_1 \left(1 \frac{Es_2}{Es_1} \right);$
- For the 3rd plateau: $\alpha = 0$ & $\beta = p_2$;

For the discretisation of the finite element model chosen for the pile, the soil reaction vector is thus expressed according to following general formula:

$$\mathbf{R}^{s} = \mathbf{K}^{s} \cdot (\mathbf{y} - \mathbf{g}) + \mathbf{c}^{e}$$
(3)

Where:

- \mathbf{K}^{s} : soil stiffness matrix corresponding to elastic part of mobilisation curve in each element;
- **c**^e : equivalent load vector corresponding to the "constant" part of the mobilisation curve in each element;
- g : equivalent displacement vector corresponding to the free displacement of the soil.

The combination of equations (2) and (3) leads to the global formulation of the "pile + soil" system:

$$(\mathbf{K}^{s} + \mathbf{K}^{e}).\mathbf{y} = \mathbf{F}^{ext} + \mathbf{K}^{s}.\mathbf{g} - \mathbf{c}^{e}$$
 (4)

The management of the soil plastification is done by an iterative process during which the terms \mathbf{K}^{s} and \mathbf{c}^{e} change until a compatible solution is obtained, at all points of the pile, with the soil lateral reaction mobilisation law.

G.2.3. Implementation

The use of the model is based on the establishment and solving of the equation system (4). The elements of this system can be completed by support conditions introduced at any point of the pile in the form of a point elastic support characterised by a stiffness in lateral translation and a rotational force.

The solving of the final system gives the displacements, rotations and reactions at all points of the pile. Knowing the reactions, moments M and shear forces T are then calculated by integration according to the following general formula:

$$T(z) = \int_0^z [q(t) - r(t)]dt + T(0)$$
$$M(z) = \int_0^z T(t)dt + M(0)$$

The model also allows an equivalent <u>tangent</u> stiffness system at the pile head to be defined which is then used as input parameter for a global balance calculation of a footing on piles with the Groupie+ module. The head stiffness system consists of a symmetrical 2 x 2 stiffness "matrix" and a "constant" term according to following general formula:

$$\begin{pmatrix} T \\ M \end{pmatrix}_{head} = \begin{pmatrix} \rho_1 & \rho_2 \\ \rho_2 & \rho_3 \end{pmatrix} \begin{pmatrix} y \\ \omega \end{pmatrix}_{head} + \begin{pmatrix} T_0 \\ M_0 \end{pmatrix}$$

G.2.4. Buckling calculation

G.2.4.1. Introduction

Buckling is the occurrence of a non-null lateral displacement under the effect of an axial load and in absence of lateral loads. This form of elastic instability appears at precise values of the axial load applied, which are called "buckling forces". The minimum value of these forces is called "critical buckling force".

Figure G.3 : Buckling

A direct analogy exists between buckling as elastic instability and "resonance" as dynamic instability which appears for precise values of the excitation frequency.

The approach introduced into Piecoef+ is based on this analogy and leads to the search for buckling forces according to the eigenvalue method benefiting from the matrix formulation obtained from discretisation into finite elements.

G.2.4.2. Formulation

Let us consider the case of a pile submitted to two opposite compression forces at its two ends. The 2nd order lateral balance of the pile is represented by the equation below:

$$EI\frac{d^{4}y(z)}{dz^{4}} + F\frac{d^{2}y(z)}{dz^{2}} = q(z) - r(z)$$
(5)

We search for the values of F allowing a non-null y(z) solution to be obtained for this equation with no transverse loads on the pile q(z) = 0. Here, we are in the case of a locally elastic behaviour of the soil (r = Es.y) which leads to the following equation:

$$EI\frac{d^4y(z)}{dz^4} + Es.y(z) + F\frac{d^2y(z)}{dz^2} = 0$$
(6)

By adopting the finite element model presented previously, equation (6) is represented by an equivalent matrix system:

$$\left(\mathbf{K}^{s}+\mathbf{K}^{e}\right)\mathbf{y}-F.\mathbf{M}.\mathbf{y}=\mathbf{0}$$
(7)

Where:

- **K**^s : stiffness matrix of soil (1st order)
- K^e : stiffness matrix of pile (1st order)
- M : "rotations" matrix (2nd order)

System (7) can be rewritten as follows:

$$\mathbf{A}.\mathbf{y} = F.\mathbf{y} \text{ where } \mathbf{A} = \mathbf{M}^{-1}.(\mathbf{K}^{s} + \mathbf{K}^{e})$$
(8)

By definition, F is a buckling force if and only if equation (6) and therefore (8) allows a nonnull solution y. Mathematically, this means that F is an eigenvalue of matrix A. Thus, to search for the buckling forces of the "pile + soil" system, all we need to do is to search for the eigenvalues of the associated A matrix. The critical buckling force is then nothing more than the smallest eigenvalue of matrix A.

Piecoef+ program thus automatically constitutes matrix A and outputs all of its eigenvalues (= buckling forces) and the associated eigenvectors (characteristic displacements of the potential buckling mechanisms).

Figure G.4 : Buckling modes and associated critical loads

This additional calculation is done at the end of the pile balance solving iterative process. It therefore takes into account the stiffness of the pile, any support conditions, and the elastic part of the soil reaction (Es1 or Es2) obtained on balance under the considered load conditions. In particular, in zones where the soil is completely plastified (3rd plateau), no additional reaction is taken into account.

The results obtained are identical to those from bibliography for simple cases (Souche, Mandel, Euler, etc.) or to those obtained by large displacement "step-by-step" numerical processing.

G.2.4.3. Taking 2nd order displacements into account

The search for buckling forces and associated displacements can be used as a basis for the estimation of 2nd order displacements generated in the pile under the effect of an axial force.

We consider the case of a pile initially having a non-null y_0 displacement corresponding either to a transverse load or, for example, to a defect in shape. This pile is then submitted to an axial force which is supposed to be entirely recovered at base (failsafe approach). The application of force F leads to an additional 2nd order displacement "y" as shown on the figure below.

Figure G.5 : 2nd order displacement under an axial load

The 2nd order balance of the pile can thus be written:

$$EI\frac{d^{4}y}{dz^{4}} + E_{s}y + F\frac{d^{2}}{dz^{2}}(y + y_{0}) = 0$$
(9)

The discretisation of the pile into finite elements allows the previous equation to be expressed in the form of a homogeneous matrix system without second member:

$$(\mathbf{K}^{s} + \mathbf{K}^{e}) \cdot \mathbf{y} - F \cdot \mathbf{M} (\mathbf{y} + \mathbf{y}_{0}) = \mathbf{0}$$
 (10)

That is with the notations of system (8):

$$\mathbf{A}.\mathbf{y} = F.(\mathbf{y} + \mathbf{y}_0) \tag{11}$$

With no initial displacement ($y_0 = 0$), we find system (8) verified by buckling forces F_i and associated displacements \mathbf{y}_i^c which are simply the eigenvectors of matrix **A**:

$$\mathbf{A}.\mathbf{y}_{i}^{c} = F_{i}.\mathbf{y}_{i}^{c} \tag{12}$$

As matrix **A** is defined positive, its eigenvectors form an orthogonal base according to which it is possible to split any vector of the same space. In particular, solution " \mathbf{y} " of equation (11) and initial displacement " \mathbf{y}_0 " can thus be expressed as follows:

$$\mathbf{y} = \sum_{i=1}^{n} \alpha_i \, \mathbf{y}_i^c \quad \& \quad \mathbf{y}_0 = \sum_{i=1}^{n} \alpha_i^0 \, \mathbf{y}_i^c \tag{13}$$

The α_i 's being the unknowns of the problem, whereas the α_i^0 's are known and can be evaluated by projection according to the formula below:

$$\boldsymbol{\alpha}_{i}^{0} = \frac{{}^{t} \mathbf{y}_{i}^{c} \cdot \mathbf{y}_{0}}{\left\| \mathbf{y}_{i}^{c} \right\|^{2}}$$

By combining equations (11), (12) and (13), we obtain the following system:

$$\sum_{i=1}^{n} \alpha_i F_i \mathbf{y}_i^c = F \sum_{i=1}^{n} \left(\alpha_i + \alpha_i^0 \right) \mathbf{y}_i^c$$
(14)

That is, by projecting along each of the \mathbf{y}_i^c :

$$\alpha_i F_i = F(\alpha_i + \alpha_i^0) \qquad i = 1..n$$
(15)

Or again:

$$\alpha_i = \frac{F}{F_i - F} \alpha_i^0 \qquad \qquad i = 1..n \tag{16}$$

We therefore deduce the expression of the "resulting" displacement taking 2nd order terms into account:

$$\mathbf{y} + \mathbf{y}_{0} = \sum_{i=1}^{n} \left(\alpha_{i} + \alpha_{i}^{0} \right) \mathbf{y}_{i}^{c} = \sum_{i=1}^{n} \frac{F_{i}}{F_{i} - F} \alpha_{i}^{0} \mathbf{y}_{i}^{c}$$
(17)

Thus, for each eigendisplacement \mathbf{y}_i^c , the resulting displacement is amplified by an amplification factor $\frac{F_i}{F_i - F} > 1$ with respect to the initial displacement.

In particular, we can see that when F tends towards one of the values of F_i , the corresponding amplification factor tends towards infinity. The pile thus fails under composed bending before the critical buckling force is reached.

These developments are covered by a publication in the context of JNGG 2012 (F. Cuira – A simple method for studying buckling of a flexible pile in a multilayer soil – JNGG Bordeaux 2012).

G.2.5. Taking shear force displacements into account

All of the developments described previously are based on a discretisation of the pile into thin beam elements. The thin beam assumption is implicitly introduced by adopting Bernoulli model which consists in neglecting the contribution of the shear displacements (shear force). The validity of this assumption requires a pile length/diameter ratio at least higher than 10 in general or even 20 in certain support conditions. For a "short" or stiff pile and, generally, for a pile where shear displacements cannot be neglected when compared with the bending displacements, use of "Timoshenko" behaviour model adapted to thick beams is required.

The representation of this model by equations requires the definition, in addition to the product of inertia, of the shear stiffness called GS'. For a pile of uniform section, this can be estimated by the product of shear module G and "reduced" section S' (see user's manual, chapter G.3.3.2). The combination of the balance and behaviour equations gives the following equation system:

$$GS' \frac{d}{dz} \left(\theta - \frac{dy}{dz} \right) = q(z) - r(z)$$

$$GS' \left(\theta - \frac{dy}{dz} \right) + EI \frac{d^2 \theta}{dz^2} = 0$$
(18)

Where θ designates the distortion (or rotation) which, unlike the Bernoulli model, no longer coincides with the first derivative of the lateral displacement *y*.

This system is solved numerically by introducing a discretisation of the pile into thick beam elements. The elements used are 2-node elements with 8 degrees of freedom: two displacements, two rotations and their first 4 respective derivatives.

For this discretisation, the balance of the pile is represented by a matrix system similar to (2), of size $4(p+1) \times 4(p+1)$ where p designates the total number of elements.

G.3. User's manual

This chapter presents:

• the input parameters of Piecoef+ module.

Certain zones can only receive data with a physical signification (for example, an EI stiffness modulus must always be strictly positive).

Piecoef+ calculation parameter input window has 4 separate tabs. The data to be completed at each tab depends sometimes on certain choices made by the user: for example, the data to be completed for a pile calculation under transverse loads are not all the same as for a specific buckling calculation.

Note: in Piecoef+ module, the user can process either a single pile or several piles corresponding to different pile configurations for a given project (see paragraph G.3.1 below).

• the results supplied by Piecoef+ module. Here again, they depend in part on the data entered by the user and especially the type of calculation.

This chapter does not detail the users' interface itself and its handling operations (buttons, menus, etc.): these aspects are dealt with in part C of the manual.

G.3.1. Pile management

Piecoef+ module allows one or more piles to be processed in the context of a given Foxta project. However, the user works only on one of these piles at a time: the "active" pile is displayed above the tabs of the data input window.

- When Piecoef+ module is first opened for a given project, the module has only one pile (Pile 1/1). The user must therefore complete this first pile and can then, if required, create additional piles (see below).
- When a previously completed Piecoef+ module is opened, the pile displayed by default is pile 1/n (n being the total number of piles already created in the module). The user can then select another pile, add or delete piles.

Pile 1/2 : Ex	ample 01a			
🛛 Parameters	🛛 Soil/pile	External loads on pile	🔮 Free g(z) soil displacement	
Colouistics to a	_			General settings
	e			

Figure G.6 : Management of piles in Piecoef+ module

The following operations can be done on the piles in Piecoef+ module:

- Add a pile: click we button: Foxta adds a new pile to the project, independent of the first one, with the same data input fields. Its number will be automatically incremented:
- To duplicate the current pile, click will add a pile identical to the current pile to the project. The <u>data</u> is duplicated in this new pile but can be modified.
- To delete the current pile, click 🚺 button.
- To display the next pile or the previous pile, click *s* or *b* button.

As stated previously, "work" can be done on only one pile at a time: the procedure is therefore to select a pile, complete/modify its data, start the calculation then display the results for this pile. The user can then select another existing pile or create another pile and repeat these steps.

The following chapters describe the use of Piecoef+ for a given pile.

G.3.2. "Parameters" tab

Figure G.7 : "Parameters" tab

G.3.2.1. "Calculation type" box

The **Calculation type** box allows several options to be selected thanks to 3 choice levels (cf. Figure G.7). The first choice level fixes the framework for the calculation, the next two levels control the definition mode for the mobilisation laws of the soil lateral reaction.

G.3.2.1.1. Pile calculation under transverse loads

This is the basic calculation mode (by default) allowing the modelling of a pile anchored in soil with elastoplastic behaviour and submitted to the application of various transverse loading conditions (point, distributed loads, free displacement g(z), 2nd order effects under the effect of an axial force, etc.).

Four possibilities are then proposed to characterise the soil lateral reaction mobilisation law:

⇒ From pressuremeter data (elastic): elastic mobilisation law characterised by a reaction coefficient ks (kPa/m) defined from pressuremeter parameters:

Figure G.8 : Soil lateral reaction mobilisation law: "from pressuremeter data (elastic)"

Where E_M refers to the pressuremeter modulus, α the rheological factor, B the diameter (equivalent) of the pile and B_0 the reference diameter taken as being equal to 0.6 m. Parameter β depends on the types of loads and is controlled by the 3rd choice level available:

•	Under permanent loads:	β = 1
		• •

- Under short term loads: $\beta = 2$
- \Rightarrow **From pressuremeter data (elastoplastic)**: elastoplastic mobilisation law with three plateaux characterised from pressuremeter values according to the figure below:

Figure G.9 : Soil lateral reaction mobilisation law: "from pressuremeter data (elastoplatic)"

The 3rd choice level allows values β_1 , β_2 , p_1 and p_2 to be fixed according to the types of loads:

Types of loads	βı	β₂	р1	p2
If permanent loads applied at pile head are dominant	1	0		p _f *
If loads due to transverse earth pressure are dominant		1/2	~ *	pı*
If short term loads applied at pile head are dominant	2	0	Pf"	p _f *
If very rapid accidental loads applied at pile head are dominant	2	1		pı*

Where \mathbf{p}_{f}^{*} and \mathbf{p}_{l}^{*} respectively refer to the <u>net</u> creep pressure and the <u>net</u> limit pressure of the soil from the pressuremeter test. Note that for the case where p1 = p2, $\beta_{2} = 0$ and the mobilisation curve has two plateaux (elastic perfectly plastic).

⇒ **By manual input with 2 plateaux**: this option enables the user to define a "manual" mobilisation law with two plateaux (elastic perfectly plastic) by directly entering the values of ks and pmax as shown on the figure below:

Figure G.10 : Soil lateral reaction mobilisation law: "by manual input with 2 plateaux"

 \Rightarrow **By manual input with 3 plateaux**: this option allows the user to define a "manual" mobilisation law with three plateaux (two slopes and a plastification plateau) by directly entering the values of ks₁, ks₂, p₁ and p₂ as shown on the figure below.

Figure G.11 : Soil lateral reaction mobilisation law: "by manual input with 3 plateaux"

<u>Note</u>: Piecoef+ does not take the group effect into account. The user shall adapt the mobilisation laws or the characteristics of the layers to simulate this effect.

G.3.2.1.2. Specific buckling calculation

This is a calculation mode specific to the calculation of the critical buckling load and of the associated failure mechanism knowing that this result is also accessible from a "calculation under transverse loads". The interest of this option is that the user shall only enter the data required for the buckling calculation.

This calculation is done considering an elastic apparent response from the soil. This is characterised by a reaction coefficient which can be estimated in two ways:

- \Rightarrow From the pressuremeter data (elastic): where ks = ks_{ref}.
- \Rightarrow By manual input (elastic)

G.3.2.2. "Calculation parameters" box

The **Calculation parameters** box allowing the following to be entered:

Designation	Units	Default value	Display condition	Mandatory value	Local checks
Calculation title	-	-	Always	Yes	-
Reference elevation	m	0.00	Always	Yes	-
Inclination angle of the pile (with respect to the vertical)	o	0.00	Always	Yes	-
Pile family	-	"No family"	Always	Yes	-

 Table G.1
 : "Parameters" tab: "Calculation parameters" box

The "Pile family" data is useful for a pile group calculation in combination with the Groupie+ module. In this case, the family allows a pile configuration to be identified and used for a Groupie+ calculation (also refer to the Groupie+ manual – Part H and especially its tutorial examples).

The "Load incrementation" button in the "Calculation parameters" box gives access to the following window:

Toad incrementation	×
Number of increments	20 🗘
Number of maximum iterations by increment	100 🗘
Ok Cancel	

Figure G.12 : Load incrementation

These parameters allow the iterative process related to the soil plastification management to be controlled:

- The external load on the pile is subdivided into several "increments" (20 by default);
- For each increment, the soil reaction mobilisation level in each element is adjusted by an iterative process (limited by default to 100 iterations).

Designation	Units	Default value	Display condition	Mandatory value	Local checks
Number of increments	-	20	Always	Yes	-
Number of maximum iterations by increment	-	100	Always	Yes	-

Table G.2 : "Parameters tab: "Load incrementation"

The values proposed by default are sufficient for most situations. However, the user can check the convergence of the calculations by ensuring that an increase in the proposed default values does not affect the results. If it does, the user shall increase the number of increments.

G.3.3. "Soil/pile" tab

	File	Project	? ~		6										1
							\$ Pile 1/1 : Exa	mple 1 🕨							
10-							Parameters	🗸 Soilipile 🛛 😳 Externa	l loads on pile 🛛 🤇	Free g(z) s	oil displacement				
							- Soil layers defini	tion							Soil/pile
							N°	Name	Col	lour	Z _{base}	EM	α		В
υn-							1	Layer 1			-7,00	1,00E04 2,50E04		0,50	0,60
		Z (m)				Reference elevation : 0.0 m		201012		1	10,00	2,0000		0,00	0,00
-5 -			_			-7.0 m	Layers Pie discretisation	number : 2			Database			•	1 4
÷						-10.0 m	Consideratio	n of shear force							
0							Layer 1 Layer 2	Name		h	7,00 3,00	EI 6,30E 6,30E	04	n 20 20	
-2															
1															
[[U U		nio.		•										
1			Subdivisions	5			Divisio	ns number : 40							*
1	\Rightarrow	c	Charges répar	ties		Cross-section				Calculation					
	-	Ch	narges ponctu	ielies						U start	Calculation See re	SURS			

Figure G.13 : "Soil/Pile" tab

This tab includes the soil layers definition box and the pile definition and pile discretisation box.

Foxta offers the possibility of saving soil layers in the soil database of the project and/or in the global soil database by clicking **Database** button.

This saves the soil layers with their parameters to avoid re-entering them when creating a new pile in Piecoef+ module or another Foxta project.

Use of the soil database is described in detail in part C of the manual.

G.3.3.1. "Soil layers definition" box

Here, the soil cross-section is defined around the studied pile: the first table below lists all of the soil parameters, independent of the type of calculation chosen. The correspondence between the type of calculation chosen and the data to be effectively completed is given in the second table below.

IMPORTANT: by convention, in Piecoef+, the base of the piles is defined at base of the last soil layer. For example, to define a 12 m long pile, the soil cross-section must be defined down to a depth of 12 m.

Designation of parameters	Units	Default value	Display condition	Mandatory value	Local checks
Z _{base} : bottom level of the layer	m	1 m lower than the layer base above	Always	Yes if displayed	Separate values decreasing with the depth
E _M : pressuremeter modulus	kPa	-	According to type of calculation	Yes if displayed	> 0
α : Menard's rheologic coefficient	-	-	According to type of calculation	Yes if displayed	$0 < \alpha \le 1$
B: drilling diameter	m	-	Always	Yes if displayed	> 0
P _f *: net creep pressure	kPa	-	According to type of calculation	Yes if displayed	> 0
P I*: net limit pressure	kPa	-	According to type of calculation	Yes if displayed	≥ P _f
\mathbf{K}_{s} : reaction coefficient of the soil	kPa/m	-	According to type of calculation	Yes if displayed	≥ 0
P _{max} : plastification pressure of soil	kPa	-	According to type of calculation	Yes if displayed	≥ 0
K_{s1} : reaction coefficient of soil for the first plateau	kPa/m	-	According to type of calculation	Yes if displayed	> 0 and ≥ K _{s2}
P ₁ : soil plastification pressure at the 1st plateau	kPa	-	According to type of calculation	Yes if displayed	≥ 0 and ≤ P_2
K_{s2} : reaction coefficient of soil for the 2nd plateau	kPa/m	-	According to type of calculation	Yes if displayed	≥ 0
P ₂ : plastification pressure of soil at the 2nd plateau	kPa	-	According to type of calculation	Yes if displayed	≥ 0

Table G.3 : "Soil/Pile" tab: "Soil layers definition" box

Type of calculation	Type of data	Soil data to be entered
	From pressuremeter data (elastic)	$Z_{\text{base}}, B, E_M, \alpha$
Pile calculation	From pressuremeter data (elastoplastic)	Z_{base} , B, E _M , α , p _f *, p _l *
under transverse loads	By manual input 2 plateaux	Z _{base} , B, K _s , P _{max}
	By manual input 3 plateaux	$Z_{base}, B, K_{s1}, P_1, K_{s2}, P_2$
Specific buckling	From elastic data	$Z_{\text{base}}, B, E_{M}, \alpha$
calculation	By manual input	Z _{base} , B, K _s

 Table G.4
 : "Soil/Pile" tab: "Soil layers definition" box –

 Data required according to type of calculation chosen

<u>Note</u>: help diagrams are available for the "manual" input modes. An example of a help diagram is given below. To access these diagrams, click with the below the table.

Figure G.14 : Help diagram illustrating the parameters of the 3-plateau "manual" behaviour law

G.3.3.2. "Pile discretisation" box

Here, the aim is to define the characteristics of the pile within each soil layer.

The number of subdivisions n controls the density of the finite element mesh considered for the pile. It is recommended to refine the mesh as this does not greatly affect the calculation time and guarantees a sufficiently accurate result.

Concerning the consideration of shear force, the contribution of these displacements is generally negligible when the "length/diameter" ratio is higher than 10 or even 20 (thin beam assumptions). For low slenderness ratio piles such as shafts for example, this assumption is not valid and it may be necessary to adopt the general thick beam model which requires the definition, in addition to the product of inertia, of the shear stiffness GS' equal to the product of the shear modulus G and the reduced section S'.

Designation of parameters	Units	Default value	Display condition	Mandatory value	Local checks
Tick box 'consideration of shear force'	-	Unticked	For calculations of "Pile calculation with lateral load" type	Yes if displayed	
H: soil thickness	m	-	Always	Completed automatically	-
EI: product of inertia of pile	kN.m²	-	Always	Yes	> 0
n : subdivisions number inside the layer	-	10	Always	Yes	5 ≤ n < 4000
GS' : shear stiffness	kN	-	If the 'Consideration of shear force' box is ticked	Yes	> 0

Table G 5	· "Soil/Pile" tab: "Pile discretisation" bo	×
10010 0.0		۰.

For a homogeneous material, the shear modulus is expressed as a function of the Young's modulus E and the Poisson ratio v by relation: G = E/2(1+v). The reduced section S' is expressed as the section of the pile S multiplied by a reduction factor k depending on the geometrical shape of the section, that is S' = k x S. The figure below gives the values of k to be considered for several current cases:

Sect	ions pleines	Sections	s à parois minces
	Rectangle k = $\frac{5}{6}$ = 0.833	\bigcirc	Tube circulaire k = 0.5
	Cercle $k = \frac{6}{7} = 0.857$		Tube carré k = 0.416
	Tube épais $k = \frac{6}{7 + 20 \alpha^2}$ $\alpha = \frac{b/a}{1 + b^2/a^2}$		Section I (b = h) EF: $k_z = 0.32$ $k_y = 0.69$
y2a	Ellipse $k_{z} = \frac{12 (3 a^{2} + b^{2})}{40 a^{2} + 16 b^{2}}$		Cornière (b = h) EF: k = 0.358
Z y	Demi-cercle k _z = 0.766 k _y = 0.863		Section U (b = h) EF: k _z = 0.235 k _y = 0.618

Figure G.15 : Values k to be considered for calculation of reduced section S' for several current cases

Solid sections Rectangle Circle Thick tube Ellipse Half circle Thin wall sections Circular tube Square tube Section I Angle U section

Note: consideration of shear force is not accessible for a specific buckling calculation.

	File P	roject ?		6											Ŧ	•
1						\$	Pile 1/1 : Calculation title	¥								
							🛛 Parameters 🖉 Soll/pile	External loads on pile	Free g(z) soil dis	placement						
													External	loads	on	pile
1							Point loads normal to the pile									
1							N°	Z	т		м		к	С		
5-							0	0,00	75	50,00		0,00	0,00E00		0,00E00	
							1	-7,00		0,00		0,00	1,00E-01		0,00E00	
1							2	-10,00		0,00		0,00	0,00E00		0,00E00	
	Z (m)															
0	+				Reference elevation : 0.0 m											
10					-7.0 m -10.0 m	:										
																2
							Prescribed displacements	at pile head			_					
5							Presc	ribed translation y (m)	3,	50 🗘	Prescribe	d rotation ω (r	ad)	-3,20 🗘		
							Multiple loads at the pile hea	d								
							Activate the multiple load	ding at pile head								
2							Distributed loads normal to the	he pile								
۰.							Activate distributed load	Is								
	lements				Ontions											1 ton
	0	Pile	6		🔍 २२ 작 🗃											2
		Subdivisions	0		Cross-section				Calculation -				1			
-	•	Charges ponctue	iles (Start ca	lculation	See result]			

G.3.4. "External loads on pile" tab

Figure G.16 : "External loads on pile" tab

This tab is used to define the various types of loads applied to the pile. Each type of load is associated to a specific box.

<u>Note</u>: for a specific buckling calculation, only the "point loads normal to the pile" box is accessible and only the point stiffnesses (K, C) can be defined.

G.3.4.1. "Point loads normal to the pile" box

This box is used to define the point loads on the pile. These are expressed in the pile <u>local</u> <u>coordinate system</u> and include 4 components: a side force T (perpendicular to the pile), a bending moment M, a point translation stiffness K and a point rotational stiffness C. These stiffnesses are to be defined (if necessary) in addition to those (surface) representative of the soil and defined in the previous tab.

The number of rows in this table is equal to the number of layers defined in the soil crosssection plus one: indeed, the point loads normal to the pile can be applied only at the upper and lower limits of the layer.

<u>REMINDER</u>: the side force T is expressed in the pile local coordinate system; in particular, for an inclined pile, this force remains perpendicular to the pile and is therefore not horizontal.

Figure G.17 : "External loads on pile" tab – Point loads normal to the pile

Designation of parameters	Units	Default value	Display condition	Mandatory value	Local checks
N°: loads order	-	-	Always	Completed automatically	-
Z: load elevation	М	-	Always	Completed automatically	-
T: point side force	kN	0.00	Always		-
M : point bending moment	kN.m	0.00	Always		-
K: restoring point stiffness in lateral translation, normal to pile axis (*)	kN/m	0.00	Always	Yes but all can be null	≥ 0
C : restoring point stiffness in rotation (**)	kN.m/rad	0.00	Always		≥ 0

(*): To simulate a hinge, take $K=1^{e}10 \text{ kN/m}$.

(**): To simulate a beam clamping, take K=1^e10 kN/m and C= 1^e10 kN.m/rad.

Table G.6 : "External loads on pile" tab: "Point loads normal to the pile" box

Clicking window:

Figure G.18 : Load definition help

G.3.4.2. "Prescribed displacements at pile head" box

Pile 1/1 : Calculation title	×						í
🛛 Parameters 🛛 💐 Soll/pile	🖉 External loads on pile 🛛 🗸	Free g(z) soil displacement		C. da un al	laada		1
- Point loads normal to the pil	e			External	loads	on p	le
Nº	Z	т	М	К	С	2	
0	0,00	750,00	0,00	0,00E00		0,00E00	4
1	-7,00	0,00	0,00	1,00E-01		0,00E00	4
2	-10,00	0,00	0,00	0,00E00		0,00E00	
							2
Presi	cribed translation y (m)	3,50 🗘	V Prescribed rotation ω (ra	ad)	-3,20 🗘	>	
Activate the multiple loads	ading at pile head						
- Distributed loads pormal to	the nile						
Activate distributed los	de de						
						100 m	2
		Calculation	🛛 See results				

Figure G.19 : "External loads on pile" tab – Prescribed displacements at pile head

With this box, the user can impose a translation or a rotation at pile head. The definition of a prescribed translation (resp. rotation) at the head deactivates the prescribed side force (resp. moment) at the head in the previous box.

Designation of parameters	Units	Default value	Display condition	Mandatory value	Local checks
y : imposed translation at pile head: tick box and value	m	-	-	Value to be defined if the tick box is ticked	-
 ω: imposed rotation at pile head: tick box and value 	Rad	-	-	Value to be defined if the tick box is ticked	-

Table G.7 : "External loads on pile" tab: "Prescribed displacements at pile head" box

<u>Note</u>: the prescribed displacements at pile head will not be displayed or considered if multiple loads at the pile head are activated.

G.3.4.3. "Multiple loads at the pile head" box

Figure G.20 : "External loads on pile" tab - Multiple loads at the pile head

This box allows the user to define several load cases (T, M) at pile head.

G.3.4.3.1. Activate the multiple loading at pile head

The data below is to be completed if the "Activate the multiple loading at pile head" tick box is activated. In this case, at least one row must be entered in the corresponding table. Also, all defined rows must be completed.

Designation of parameters	Units	Default value	Display condition	Mandatory value	Local checks
N°: load case number at pile head	-	-		Incremented automatically	-
T: side force at pile head	kN	-	For each line created in the table	Yes	On each row, one of the 2
M : bending moment at pile head	kN.m	-		Yes	not be null

Table G.8: "External loads on pile" tab: "Multiple loads at the pile head" box

Reminder: the prescribed displacements at pile head will not be displayed or considered if multiple loads at the pile head are activated.

The pile family is displayed under the table of this box (according to the data entered for the "Parameters" tab). If a family has effectively been defined in "Parameters" tab, "load cases import from Groupie+ wizard" is accessible by clicking to button. Its use is described in the next subchapter.

G.3.4.3.2. Load cases import from Groupie+

As stated previously, if a family has been defined in "Parameters" tab, "Load cases import from Groupie+ wizard" is accessible by clicking to button. A specific wizard is then displayed (cf. Figure G.21).

- In "Import directory" box, indicate the directory where the Groupie+ calculation to be imported is found. By default, the wizard displays the directory of the current project. If need be, use Browse _____ button. In the left hand box, Foxta displays the piles available in the selected directory.
- Select the chosen pile and the import axis (along Ox or along Oy): the calculation date is displayed on the right. A warning message may tell that the calculation date is old and ask the user to check the content of the imported values.

The values of the T and M pairs (Side force - kN - and Bending moment - kN.m) contained in the selected file are displayed in the right hand box: these are the pairs which will be imported if the user validates this window.

• Indicate whether the existing pairs (T, M) in the current project must be replaced or whether pairs (T, M) are to be added to the existing pairs of the current project.

Loads cases import from Groupie wizar	rd	×						
Import directory								
E:\Users\mto\Documents\Logiciels Terraso\Foxtav3\groupe de pieu\GROUPE DE PIEUX								
groupe de pieux (Family A along Ox)								
groupe de pieux (Family A along Ox)	Calculation date	Jeudi 29 août 2013 10:24:14						
5.00p 00 prost (, and) , and g 0 y ;	T / M values to impo	rt						
	22 1042 / 0 57866	1						
	24 8803 / 0 14166							
	24.8803 / 0.14166	3						
	23.1042 / 0.57866							
	16.6458 / 2.16773							
	14.8697 / 2.60472							
	14.8697 / 2.60472							
	16.6458 / 2.16773							
	Replace actual	values						
	Add values affe	ar current values						
	and values and							
(Ok Cancel							

Click OK button.

Figure G.21 : Load cases import from Groupie+ wizard

The data imported is now available in the form of load cases at the pile head (T, M) in Piecoef+ module.

G.3.4.4. "Distributed loads normal to the pile" box

Figure G.22 : "External loads on pile" tab - Distributed loads normal to the pile

This box allows the user to define the distributed loads normal to the pile (local coordinate system) in the form of a trapezoidal load on the thickness of each layer. These loads are taken as positive from left to right.

The data below is to be completed if the "Activate distributed loads" tick box is activated:

Designation of parameters	Units	Default value	Display condition	Mandatory value	Local checks
N°: loads order	-	-		Completed automatically	-
Z1 : top level of the load	m	-		Completed automatically	-
Z2 : base level of the load	m	-	lf 'Activate distributed loads' is	Completed automatically	-
Ch. 1 : load value at the top of the layer	kPa	0.00	ticked	Vac hut all can be	-
Ch. 2 : load value at the bottom of the layer	kPa	0.00		null	-

Table G.9 : "External loads on pile" tab: "Distributed loads normal to the pile" box

The number of rows in this table is therefore fixed: it is equal to the number of layers defined in the soil cross-section and some data is completed automatically according to the soil cross-section (however, it is possible not to define distributed loads in the table if the project has none).

G.3.5. "Free g(z) soil displacement " tab

Note: This tab is accessible only for a pile calculation under transverse loads.

This function (optional) allows the user to define a free g(z) soil displacement around the pile: considering such a displacement implies that the lateral reaction of the soil does not depend on the lateral displacement of the pile but on the relative displacement of the pile y(z) with respect to the (free) displacement of the soil y(z)-g(z).

This free soil displacement generally occurs within a compressible layer under the effect of a backfill built after the implementation of the piles as shown on the figure below.

Figure G.23 : Example of development of a free g(z) displacement

Figure G.24 : "Free g(z) soil displacement" tab

G.3.5.1. "Free g(z) soil displacement" box

Designation of parameters	Units	Default value	Display condition	Mandatory value	Local checks
Layer	-	-		Completed automatically according to Z	-
Z: elevation	m	-	If "Define a g(z) displacement" is ticked	Yes	The series of values must be strictly decreasing
g(z) : free displacement of soil	m	-		Yes	-

The data below is to be completed if the "Define a g(z) displacement" tick box is activated:

Table G.10: "Free g(z) soil displacement" tab "Free g(z) soil displacement" box

This table can be completed manually or automatically by the g(z) wizard described below.

Note: the free g(z) displacement can be introduced directly by any (z, g(z)) pairs. In particular, Z values need not be compatible with the pile mesh. Indeed, the calculation engine systematically applies a re-interpolation of these values to express the g(z) values at the calculation points.

The free g(z) displacement is shown on the graphical representation:

Figure G.25 : Graphical representation of the free g(z) displacement

G.3.5.2. g(z) wizard using Eurocode 7

This wizard generates, over the height of a given layer, a free g(z) soil displacement in compliance with the provisions of the Eurocode 7 standard for deep foundations (NF P 94 262): this is a third degree polynomial function characterised by an amplitude g_{max} and 4 coefficients A1 to A4. The deep foundation standard proposes an empirical method for evaluating the g_{max} amplitude of the g(z) function expressed as a percentage of the height of the compressible layer. This percentage depends on the geometry of the backfill, the relative position of the pile with respect to the base of the backfill and the available safety vis-à-vis the stability of the whole.

For coefficients A1 to A4, the deep foundation standard proposes two sets of coefficients (curves I and II in the interface) according to the presence or not of a less deformable layer at the surface:

- Set 1: to be used in the general case;
- Set 2: to be used in the case of a less deformable layer of significant height at the surface (greater than 30% of the height of the compressible layer).

Figure G.26 : g(z) function - Curves 1 and 2 as defined in Eurocode 7

This wizard is accessible by 强 button:

g(z) wizard using the Eurocode 7					
Definition of compressible horizon					
Horizon roof elevation Z1 (m) -8,0					
Base elevation of the horizon Z12,0 🗘					
Dimensionless definition					
A1 5,00 CEC7 curves					
A2 1,50 C					
A3 0,00 🗘 🔳					
A4 -2,00 C					
Amplitude					
G _{max} (m) 0,0100 🗘					
$g(z)=G_{max}^{*}(A1+A2*Z+A3*Z^{2}+A4*Z^{3})$ with Z=(Z1-z)/(Z1-Z2)					
Ok Cancel					

Figure G.27 : g(z) wizard using the Eurocode 7

"Definition of compressible horizon" box

Designation of parameters	Units	Default value	Display condition	Mandatory value	Local checks
Z1 : horizon roof elevation	m	0.00	Always	Yes	Z1>Z2
Z2 : base elevation of the horizon	m	0.00	Always	Yes	Z1>Z2

 Table G.11
 : g(z) wizard: "Definition of compressible horizon" box

"Dimensionless definition" box

Designation of parameters	Units	Default value	Display condition	Mandatory value	Local checks
A1	-	Coefficients A1	Always	Yes	-
A2	-	to A4 are proposed	Always	Yes	-
A3	-	according to the deep foundation	Always	Yes	-
A4	-	standard	Always	Yes	-

Table G.12: g(z) wizard: "Dimensionless definition" box

"Amplitude" box

Designation of parameters	Units	Default value	Display condition	Mandatory value	Local checks
G _{max} : maximum amplitude of free displacement of soil in compliance with the deep foundation standard	m	-	Always	Yes	-

Table G.13: g(z) wizard: "Amplitude" box

G.3.5.3. Import wizard for a Piecoef+ displacement

The user can import a Piecoef+ displacement by clicking 🛐 button under the g(z) table:

Import wizard for the g(z) displacement from another calculation							
Import directory							
E:\Users\mto\Documents\Logiciels Terraso\Foxtav3\picoef\MTO\EXEMPLE 02A							
Exemple 02a (Pile 1)	Calculation date	Lundi 30 novembre 2015 16:50:00					
Exemple 02a (Pile 2)	Culculation date						
	z => g(z) values to i	mport					
	0.0 => 0.0		^				
	-0.2 => 9.848E-4						
	-0.4 => 0.00197437						
	-0.6 => 0.00297324						
	-0.8 => 0.00398546	3					
	-1.0 => 0.0050144						
	-1.2 => 0.00606245	;					
	-1.4 => 0.00713079)					
	-1.6 => 0.00821919						
	-1.8 => 0.00932568						
	-2.0 => 0.0104463						
	-2.33333 => 0.0123287						
	-2.66667 => 0.0142014						
	-3.0 => 0.0160337						
	-3.33333 => 0.0177	972					
	-3.66667 => 0.0194	1657					
	-4.0 => 0.0210153						
	-4.33333 => 0.0224	1247					
	-4.66667 => 0.0236	6749	~				
	Replace actual	values					
	Add values after Add values	r current values					
Ok Cancel							

Figure G.28 : Import wizard for a Piecoef+ displacement

- On the top of the window, Foxta indicates by default the directory and the name of the current project. By clicking Browse _____ button, the user can select another project in the same directory or in a different directory.
- Select a pile in the left hand box: the calculation date of this pile is displayed on the right. A warning message may indicate that the calculation date is old and ask the user to check the content of the imported values.
- Foxta displays the values to be imported in the right hand frame "z => g(z) values to import".
- Indicate whether the existing g(z) values of the current project are to be replaced or whether imported values are to be added after the existing values of the current project.
- Click OK button.

The imported values are now available in the project.

The number of rows in this table is therefore fixed: it is equal to the number of layers defined in the soil cross-section and some data is completed automatically according to the soil cross-section (however, it is possible not to define distributed loads in the table if the project has none).

G.3.6. "Initial displacement of pile $y_0(z)$ " tab

Note: this tab is accessible only for a specific buckling calculation.

This function (optional) allows the user to define an initial displacement $y_0(z)$ for the pile (for a defect in shape for example). On the basis of this displacement, Piecoef+ evaluates the bending loads and the 2nd order displacements generated by applying an axial force at the head of the pile.

The data below is to be completed if "Define a $y_0(z)$ displacement" tick box is activated:

Designation of parameters	Units	Default value	Display condition	Mandatory value	Local checks
Layer	-	-		Completed automatically according to Z	-
Z: elevation	E	-	If "Define a y ₀ (z) displacement" is ticked	Yes	The set of values must be strictly decreasing
y₀(z) : initial deflection of the pile	m	-		Yes	-

Table G.14: "Free g(z) soil displacement" tab "Free g(z) soil displacement" box

This table can be completed manually or automatically by an import wizard the use of which is identical to the one described in chapter G.3.5.3.

Note: the initial displacement $y_0(z)$ can be introduced directly by any pair (z, $y_0(z)$). In particular, Z values needn't to be compatible with the pile mesh. Indeed, the calculation engine systematically applies a re-interpolation of these values to express the $y_0(z)$ values at calculation points.

The free $y_0(z)$ displacement is shown on the graphical representation:

Figure G.29 : Graphical representation of the initial $y_0(z)$ displacement

G.3.7. Calculation and Results

G.3.7.1. Calculation

The calculation can be launched from any tab provided that the tabs are correctly completed, that is when they are all marked by a green cross (for example: **Parameters**).

These tabs are marked by a red cross (for example: Soil/pile) whilst not correctly completed (missing data or not complying with expected values).

To launch the calculation, click (Start calculation) button.

G.3.7.2. Results

To display the calculation results, click veresults button.

The window below is then displayed and proposes different types of results accessible after a Piecoef+ calculation:

- 2 types of numerical results: formatted results and result tables.
- 2 types of graphical results: main curves and curves related to buckling.

	Calculated : 2 minutes ago (Calculation date : Nov 30, 2015 4:42:01 PM)	Back to the data
	Formated results	
- Graphical results		
	Main curves Curves related to bucking	

Figure G.30 : Results window

The chapters below detail the various results for a calculation case without multiple loads at pile head. See chapter G.3.7.3 for the results of a calculation with multiple loads at pile head.

G.3.7.2.1. Formatted numerical results

File : E:\Us	ers\mto\Documents	\Foxtav3\picoef	EXEMPLE 01A\E	xemple 01a[PC]]-1.resu		
Calcul réalis	éle: 27/02/2 par: Terraso	012 à 14h20]					
nb d'incrémen itération :	ts: 020 003						
Cote de référ Inclinaison(°	ence: 0.000): 0.000						
Type de calcu	1: Ca	lcul de Pieu so	ous sollicitatio	ons latérales			
Loi élastopla	stique de mobilis	ation de la réa	ction latérale	du sol défin	ie à partir (des caractéri	stiques pressiométriques
Type de solli Caractéristiqu	citations : 1. es des couches (d	Cas où les sol onnées utilisat	licitations per eur)	rmanentes en '	tête dominen	t	
couche base	EI	EM	alpha	в	pf	pl	
01 -8.0 02 -12.0	0 0.636E+05 0 0.636E+05	5000.00 20000.00	0.33 0.50	0.600	300.00 2000.00	500.00 3000.00	
Discrétisation	du pieu (Paramèt	res du calcul)					
Elément	XL	EI	ks1*B	p1*B	ks2*B	p2	**B
001	0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E-	+00 0.180	0E+03
002	0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E-	+00 0.180	00E+03
003	0.26/	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E-	+00 0.180	0E+03
005	0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E	+00 0.180	0E+03
006	0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E-	+00 0.180	0E+03
007	0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E-	+00 0.180	0E+03
008	0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E-	+00 0.180	0E+03
009	0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E-	+00 0.180	0E+03
010	0.26/	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E-	+00 0.180	10E+03
012	0.267	0.63602+05	0.1383E+05	0.1800E+03	0.0000E	+00 0.180	0E+03
013	0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E	+00 0.180	0E+03
014	0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E-	+00 0.180	0E+03
015	0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E-	+00 0.180	0E+03
016	0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E-	+00 0.180	0E+03
017	0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E-	+00 0.180	00E+03
018	0.26/	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E-	+00 0.180	002+03
020	0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E	+00 0.180	0E+03
021	0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E-	+00 0.180	0E+03
022	0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E-	+00 0.180	0E+03
023	0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E-	+00 0.180	0E+03
024	0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E-	+00 0.180	0E+03
025	0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E-	+00 0.180	00E+03
026	0.26/	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E	+00 0.180	00000
028	0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E	+00 0.180	0E+03

Figure G.31 : Formatted numerical results (reminder of data)

The formatted results contain:

• A reminder of the data: general parameters, soil data, pile discretisation, defined loads, etc. This first section also includes the list of calculation points (nodes) defined along the pile in its local coordinate system.

		=====50 =====50	LUTION=====							
	Matrice	de raideu	r en tête du	pieu						
	T M r1 = 0	r1 r2 r2 r3	y w + w - 0	TO MO .4799E-04						
	r3 = 0	.6150E+05	MU = 0	.5/1/2-04						
De — Notations	Déplacements et sollicitations en tout point du pieu									
2 : con X : abs y : fl? w : rot g : dét M : mor T : eft	te (longueu scisse - re èche absolu tation (=dy formée libr ment fléchi fort tranch action laté	r) père local e latérale /dX) e du sol p ssant (force ant (force	du pieu (lon du pieu (lon rojetée (long ce x longueur	gueur) gueur) ueur))						
1. Fe		raie du so	I (force / un	ité de surfac	ce)					
Elément	Z	x	I (force / un y	ité de surfac	ce) 	т		r	palier	
Elément	Z 0.000 -0.133 -0.267	X 0.000 0.133 0.267	0.489E-01 0.457E-01 0.426E-01	g 0.000E+00 0.000E+00 0.000E+00		T 0.700E+03 0.613E+03 0.531E+03	M 0.170E-08 0.875E+02 0.164E+03	r 0.113E+04 0.105E+04 0.982E+03	palier 1 1	
Elément 001 001 002 002	Z 0.000 -0.133 -0.267 -0.267 -0.400	X 0.000 0.133 0.267 0.267 0.400	V 0.489E-01 0.457E-01 0.426E-01 0.426E-01 0.395E-01	9 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	W 	T 0.700E+03 0.613E+03 0.531E+03 0.531E+03 0.456E+03	M 0.170E-08 0.875E+02 0.164E+03 0.164E+03 0.229E+03	r 0.113E+04 0.105E+04 0.982E+03 0.982E+03 0.911E+03	palier 1 1 1 1	
Elément 001 001 002 002 002 002	Z 0.000 -0.133 -0.267 -0.267 -0.400 -0.533 -0.532	X 0.000 0.133 0.267 0.267 0.400 0.533 0.533	y 0.489E-01 0.457E-01 0.426E-01 0.395E-01 0.365E-01	9 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.236E-01 -0.235E-01 -0.232E-01 -0.232E-01 -0.228E-01 -0.228E-01	T 0.700E+03 0.613E+03 0.531E+03 0.456E+03 0.456E+03 0.386E+03	M 0.170E-08 0.875E+02 0.164E+03 0.29E+03 0.225E+03 0.225E+03	r 0.113E+04 0.105E+04 0.982E+03 0.982E+03 0.91E+03 0.91E+03 0.842E+03	palier 1 1 1 1 1	
Elément 001 001 002 002 002 002 003	Z 0.000 -0.133 -0.267 -0.267 -0.400 -0.533 -0.533 -0.667	X 0.000 0.133 0.267 0.267 0.400 0.533 0.533 0.667	y 	9 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		T 0.700E+03 0.613E+03 0.531E+03 0.456E+03 0.386E+03 0.386E+03 0.386E+03	M 0.170E-08 0.875E+02 0.164E+03 0.229E+03 0.285E+03 0.285E+03 0.322E+03	r 0.113E+04 0.105E+04 0.982E+03 0.982E+03 0.981E+03 0.842E+03 0.842E+03 0.774E+03	palier 1 1 1 1 1 1 1	
Elément 001 001 002 002 002 003 003	Z 0.000 -0.133 -0.267 -0.267 -0.400 -0.533 -0.533 -0.667 -0.800	X 0.000 0.133 0.267 0.267 0.533 0.533 0.533 0.667 0.800	y 0.489E-01 0.457E-01 0.426E-01 0.365E-01 0.365E-01 0.365E-01 0.365E-01 0.365E-01 0.385E-01	9 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	W -0.236E-01 -0.235E-01 -0.232E-01 -0.232E-01 -0.228E-01 -0.223E-01 -0.223E-01 -0.226E-01 -0.226E-01 -0.209E-01	T 0.700E+03 0.613E+03 0.531E+03 0.531E+03 0.456E+03 0.386E+03 0.386E+03 0.321E+03 0.262E+03	M 0.170E-08 0.875E+02 0.164E+03 0.229E+03 0.285E+03 0.332E+03 0.371E+03	r 0.113E+04 0.105E+04 0.982E+03 0.982E+03 0.842E+03 0.842E+03 0.774E+03 0.774E+03	palier 1 1 1 1 1 1 1 1 1	
Elément 001 001 002 002 003 003 003 003 004	Z 0.000 -0.133 -0.267 -0.267 -0.400 -0.533 -0.533 -0.667 -0.800 -0.800	X 0.000 0.133 0.267 0.267 0.400 0.533 0.533 0.667 0.800 0.800	y 0.489E-01 0.457E-01 0.426E-01 0.426E-01 0.395E-01 0.365E-01 0.365E-01 0.308E-01 0.308E-01	9 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	W -0.236E-01 -0.235E-01 -0.232E-01 -0.232E-01 -0.223E-01 -0.223E-01 -0.223E-01 -0.223E-01 -0.226E-01 -0.209E-01	T 0.700E+03 0.613E+03 0.531E+03 0.531E+03 0.456E+03 0.386E+03 0.386E+03 0.321E+03 0.262E+03	M 0.170E-08 0.875E+02 0.164E+03 0.229E+03 0.285E+03 0.285E+03 0.332E+03 0.371E+03	r 0.113E+04 0.105E+04 0.982E+03 0.981E+03 0.842E+03 0.842E+03 0.842E+03 0.774E+03 0.779E+03 0.709E+03	palier 1 1 1 1 1 1 1 1 1	
Elément 001 001 002 002 003 003 003 003 004 004	Z 0,000 -0.133 -0.267 -0.267 -0.400 -0.533 -0.657 -0.800 -0.800 -0.933	X 0.000 0.133 0.267 0.400 0.533 0.667 0.800 0.933	y 0.489E-01 0.457E-01 0.426E-01 0.426E-01 0.365E-01 0.365E-01 0.365E-01 0.368E-01 0.308E-01 0.308E-01 0.280E-01	9 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.236E-01 -0.235E-01 -0.232E-01 -0.232E-01 -0.228E-01 -0.223E-01 -0.223E-01 -0.223E-01 -0.206E-01 -0.209E-01 -0.201E-01	T 0.700E+03 0.613E+03 0.531E+03 0.386E+03 0.386E+03 0.386E+03 0.321E+03 0.262E+03 0.262E+03 0.207E+03	M 0.170E-08 0.875E+02 0.164E+03 0.229E+03 0.285E+03 0.332E+03 0.371E+03 0.371E+03 0.402E+03	r 0.113E+04 0.105E+04 0.982E+03 0.91E+03 0.842E+03 0.774E+03 0.774E+03 0.709E+03 0.709E+03 0.646E+03	palier 1 1 1 1 1 1 1 1 1 1 1	
Elément 001 001 002 002 003 003 003 004 004 004	Z 0.000 -0.133 -0.267 -0.267 -0.400 -0.533 -0.667 -0.800 -0.800 -0.933 -1.067	X 0.000 0.133 0.267 0.400 0.533 0.533 0.667 0.800 0.933 1.067	y 0.489E-01 0.457E-01 0.457E-01 0.426E-01 0.365E-01 0.365E-01 0.365E-01 0.308E-01 0.308E-01 0.308E-01 0.280E-01 0.254E-01	g 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	W -0.236E-01 -0.235E-01 -0.232E-01 -0.228E-01 -0.228E-01 -0.228E-01 -0.228E-01 -0.228E-01 -0.228E-01 -0.209E-01 -0.209E-01 -0.209E-01 -0.192E-01	T 0.700E+03 0.613E+03 0.531E+03 0.531E+03 0.386E+03 0.386E+03 0.262E+03 0.262E+03 0.262E+03 0.262E+03 0.262E+03	M 0.170E-08 0.875E+02 0.164E+03 0.229E+03 0.285E+03 0.371E+03 0.371E+03 0.402E+03 0.427E+03	r 0.113E+04 0.105E+04 0.982E+03 0.982E+03 0.842E+03 0.842E+03 0.774E+03 0.709E+03 0.709E+03 0.646E+03 0.586E+03	palier 1 1 1 1 1 1 1 1 1 1 1 1	
Elément 001 001 002 002 003 003 003 004 004 004 004 005 005	Z 0.000 -0.133 -0.267 -0.267 -0.400 -0.533 -0.533 -0.667 -0.800 -0.933 -1.067 -1.067 -1.200	X 0.000 0.133 0.267 0.267 0.267 0.533 0.533 0.653 0.667 0.800 0.933 1.067 1.067 1.067	y 0.489E-01 0.457E-01 0.426E-01 0.426E-01 0.365E-01 0.365E-01 0.365E-01 0.308E-01 0.308E-01 0.280E-01 0.254E-01 0.254E-01	9 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	W -0.236E-01 -0.235E-01 -0.232E-01 -0.232E-01 -0.223E-01 -0.223E-01 -0.223E-01 -0.223E-01 -0.209E-01 -0.209E-01 -0.209E-01 -0.192E-01 -0.192E-01	T 0.700E+03 0.613E+03 0.531E+03 0.531E+03 0.386E+03 0.386E+03 0.386E+03 0.386E+03 0.386E+03 0.262E+03 0.262E+03 0.207E+03 0.158E+03 0.158E+03 0.158E+03	M 0.170E-08 0.875E+02 0.164E+03 0.229E+03 0.285E+03 0.285E+03 0.32E+03 0.371E+03 0.371E+03 0.402E+03 0.427E+03 0.427E+03	r 0.113E+04 0.105E+04 0.982E+03 0.982E+03 0.911E+03 0.842E+03 0.842E+03 0.774E+03 0.779E+03 0.709E+03 0.586E+03 0.586E+03	palier 1 1 1 1 1 1 1 1 1 1 1 1 1	
Elément 001 001 002 002 003 003 003 003 003 004 004 004 005 005	Z 0,000 -0.133 -0.267 -0.267 -0.400 -0.533 -0.653 -0.667 -0.800 -0.933 -1.067 -1.200 -1.333	X 0.000 0.133 0.267 0.267 0.533 0.533 0.667 0.800 0.933 1.067 1.200 1.333	y 0.489E-01 0.457E-01 0.426E-01 0.426E-01 0.395E-01 0.365E-01 0.365E-01 0.368E-01 0.308E-01 0.308E-01 0.280E-01 0.254E-01 0.254E-01 0.229E-01	9 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00		T 0.700E+03 0.613E+03 0.531E+03 0.456E+03 0.386E+03 0.386E+03 0.386E+03 0.386E+03 0.262E+03 0.207E+03 0.158E+03 0.158E+03 0.114E+03 0.736E+02	M 0.170E-08 0.875E+02 0.164E+03 0.229E+03 0.285E+03 0.285E+03 0.332E+03 0.371E+03 0.427E+03 0.427E+03 0.445E+03 0.45E+03	r 0.113E+04 0.105E+04 0.982E+03 0.91E+03 0.842E+03 0.842E+03 0.774E+03 0.779E+03 0.709E+03 0.646E+03 0.586E+03 0.586E+03 0.528E+03 0.528E+03	palier 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Elément 001 002 002 003 003 003 003 004 004 004 004 005 005 005 006	Z 0.000 -0.133 -0.267 -0.267 -0.400 -0.533 -0.533 -0.667 -0.800 -0.800 -0.933 -1.067 -1.200 -1.333 -1.333	X 0.000 0.133 0.267 0.267 0.533 0.533 0.667 0.800 0.933 1.067 1.200 1.333 1.333	y 0.489E-01 0.457E-01 0.457E-01 0.426E-01 0.365E-01 0.365E-01 0.365E-01 0.308E-01 0.308E-01 0.284E-01 0.254E-01 0.254E-01 0.205E-01	g 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	W -0.236E-01 -0.232E-01 -0.232E-01 -0.223E-01 -0.223E-01 -0.223E-01 -0.223E-01 -0.223E-01 -0.226E-01 -0.209E-01 -0.209E-01 -0.192E-01 -0.192E-01 -0.174E-01	T 0.700E+03 0.613E+03 0.531E+03 0.531E+03 0.386E+03 0.386E+03 0.262E+03 0.262E+03 0.262E+03 0.158E+03 0.158E+03 0.118E+03 0.736E+02	M 0.170E-08 0.875E+02 0.164E+03 0.229E+03 0.285E+03 0.371E+03 0.472E+03 0.427E+03 0.445E+03 0.445E+03 0.457E+03	r 0.113E+04 0.982E+03 0.982E+03 0.842E+03 0.842E+03 0.774E+03 0.709E+03 0.646E+03 0.586E+03 0.586E+03 0.586E+03 0.586E+03 0.473E+03	palier 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Elément 001 001 002 002 003 003 003 004 004 004 004 005 005 005 005 006	Z 0.000 -0.133 -0.267 -0.267 -0.400 -0.533 -0.633 -0.667 -0.800 -0.933 -1.067 -1.067 -1.200 -1.333 -1.333 -1.467	X 0.000 0.133 0.267 0.267 0.533 0.533 0.667 0.800 0.933 1.067 1.200 1.333 1.333 1.467	y 0.489E-01 0.457E-01 0.426E-01 0.426E-01 0.365E-01 0.365E-01 0.365E-01 0.308E-01 0.308E-01 0.254E-01 0.254E-01 0.255E-01 0.205E-01 0.205E-01 0.183E-01	9 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	W -0.236E-01 -0.235E-01 -0.232E-01 -0.232E-01 -0.223E-01 -0.223E-01 -0.223E-01 -0.223E-01 -0.201E-01 -0.209E-01 -0.201E-01 -0.192E-01 -0.192E-01 -0.192E-01 -0.192E-01 -0.174E-01 -0.174E-01 -0.174E-01	T 0.700E+03 0.613E+03 0.531E+03 0.531E+03 0.386E+03 0.386E+03 0.386E+03 0.262E+03 0.262E+03 0.262E+03 0.207E+03 0.158E+03 0.158E+03 0.158E+03 0.158E+02 0.736E+02 0.736E+02 0.378E+02	M 0.170E-08 0.875E+02 0.164E+03 0.285E+03 0.285E+03 0.371E+03 0.371E+03 0.402E+03 0.427E+03 0.427E+03 0.457E+03 0.457E+03 0.465E+03	r 0.113E+04 0.105E+04 0.982E+03 0.981E+03 0.842E+03 0.842E+03 0.774E+03 0.709E+03 0.709E+03 0.586E+03 0.586E+03 0.586E+03 0.586E+03 0.586E+03 0.473E+03 0.473E+03 0.473E+03	palier 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Elément 001 001 002 002 003 003 003 003 003 003 004 004 004 005 005 005 005 006 006	Z 0,000 -0,133 -0,267 -0,267 -0,400 -0,533 -0,667 -0,800 -0,933 -1,067 -1,200 -1,333 -1,467 -1,600	X 0.000 0.133 0.267 0.267 0.400 0.533 0.667 0.800 0.933 1.067 1.200 1.333 1.333 1.467 1.600	y 0.489E-01 0.457E-01 0.457E-01 0.426E-01 0.365E-01 0.365E-01 0.365E-01 0.368E-01 0.368E-01 0.308E-01 0.280E-01 0.254E-01 0.254E-01 0.205E-01 0.162E-01	9 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	W -0.236E-01 -0.235E-01 -0.232E-01 -0.232E-01 -0.223E-01 -0.223E-01 -0.223E-01 -0.223E-01 -0.209E-01 -0.209E-01 -0.192E-01 -0.192E-01 -0.192E-01 -0.174E-01 -0.164E-01 -0.164E-01	T 0.700E+03 0.613E+03 0.531E+03 0.531E+03 0.386E+03 0.386E+03 0.386E+03 0.262E+03 0.262E+03 0.262E+03 0.207E+03 0.158E+03 0.158E+03 0.158E+03 0.158E+03 0.736E+02 0.736E+02 0.378E+02 0.608E+01	M 0.170E-08 0.875E+02 0.164E+03 0.285E+03 0.285E+03 0.285E+03 0.332E+03 0.371E+03 0.371E+03 0.402E+03 0.427E+03 0.445E+03 0.457E+03 0.465E+03 0.465E+03	r 0.113E+04 0.105E+04 0.982E+03 0.982E+03 0.842E+03 0.842E+03 0.774E+03 0.709E+03 0.709E+03 0.586E+03 0.528E+03 0.528E+03 0.528E+03 0.473E+03 0.473E+03 0.473E+03	palier 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Elément 001 002 002 003 003 003 003 003 004 004 004 004 005 005 005 005 006 006 006 007	Z 0,000 -0.133 -0.267 -0.267 -0.400 -0.533 -0.637 -0.800 -0.800 -0.933 -1.067 -1.200 -1.333 -1.467 -1.600	X 0.000 0.133 0.267 0.400 0.533 0.667 0.800 0.933 1.067 1.200 1.333 1.467 1.600	y 0.489E-01 0.457E-01 0.457E-01 0.426E-01 0.365E-01 0.365E-01 0.365E-01 0.368E-01 0.308E-01 0.254E-01 0.254E-01 0.254E-01 0.205E-01 0.162E-01 0.162E-01	g 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	W -0.236E-01 -0.232E-01 -0.232E-01 -0.228E-01 -0.228E-01 -0.228E-01 -0.228E-01 -0.228E-01 -0.228E-01 -0.209E-01 -0.209E-01 -0.192E-01 -0.192E-01 -0.174E-01 -0.154E-01 -0.154E-01	T 0.700E+03 0.613E+03 0.531E+03 0.531E+03 0.386E+03 0.386E+03 0.262E+03 0.262E+03 0.262E+03 0.262E+03 0.158E+03 0.158E+03 0.118E+03 0.736E+02 0.378E+02 0.608E+01	M 0.170E-08 0.875E+02 0.164E+03 0.229E+03 0.285E+03 0.371E+03 0.472E+03 0.427E+03 0.447E+03 0.4457E+03 0.457E+03 0.465E+03 0.468E+03 0.468E+03	r 0.113E+04 0.982E+03 0.982E+03 0.842E+03 0.842E+03 0.774E+03 0.709E+03 0.586E+0300000000000000000000000000000000000	palier 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Elément 001 001 002 002 003 003 003 003 004 004 004 005 005 005 005 006 006 006 007 007	Z 0.000 -0.133 -0.267 -0.267 -0.400 -0.533 -0.667 -0.800 -0.800 -0.800 -0.933 -1.067 -1.067 -1.200 -1.333 -1.333 -1.467 -1.600 -1.733	X 0.000 0.133 0.267 0.267 0.400 0.533 0.667 0.800 0.933 1.067 1.067 1.200 1.333 1.333 1.467 1.600 1.733	y 0.489E-01 0.457E-01 0.426E-01 0.426E-01 0.365E-01 0.365E-01 0.365E-01 0.368E-01 0.308E-01 0.308E-01 0.254E-01 0.254E-01 0.255E-01 0.205E-01 0.162E-01 0.162E-01 0.162E-01	9 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	w -0.236E-01 -0.235E-01 -0.232E-01 -0.223E-01 -0.223E-01 -0.223E-01 -0.223E-01 -0.223E-01 -0.209E-01 -0.209E-01 -0.209E-01 -0.192E-01 -0.192E-01 -0.192E-01 -0.192E-01 -0.174E-01 -0.154E-01 -0.154E-01 -0.154E-01 -0.154E-01	T 0.700E+03 0.613E+03 0.531E+03 0.531E+03 0.386E+03 0.386E+03 0.386E+03 0.262E+03 0.262E+03 0.262E+03 0.158E+03 0.158E+03 0.158E+03 0.158E+03 0.158E+02 0.736E+02 0.736E+02 0.378E+02 0.608E+01 0.608E+01 0.219E+02	M 0.170E-08 0.875E+02 0.164E+03 0.229E+03 0.285E+03 0.371E+03 0.371E+03 0.472E+03 0.427E+03 0.427E+03 0.457E+03 0.457E+03 0.465E+03 0.468E+03	r 0.113E+04 0.105E+04 0.982E+03 0.981E+03 0.842E+03 0.774E+03 0.709E+03 0.709E+03 0.586E+03 0.586E+03 0.586E+03 0.586E+03 0.586E+03 0.473E+03 0.473E+03 0.473E+03 0.373E+03 0.373E+03	palier 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Elément 001 001 002 002 003 003 003 004 004 004 005 005 005 006 006 006 007 007 007 007	Z 0,000 -0,133 -0,267 -0,267 -0,400 -0,533 -0,667 -0,800 -0,800 -0,933 -1,067 -1,067 -1,200 -1,333 -1,467 -1,600 -1,733 -1,867 -1,867	X 0.000 0.133 0.267 0.267 0.267 0.533 0.653 0.667 0.800 0.933 1.067 1.067 1.200 1.333 1.467 1.600 1.600 1.733 1.867 .867	y 0.489E-01 0.457E-01 0.426E-01 0.426E-01 0.365E-01 0.365E-01 0.365E-01 0.308E-01 0.308E-01 0.280E-01 0.284E-01 0.254E-01 0.205E-01 0.205E-01 0.205E-01 0.162E-01 0.162E-01 0.1442E-01 0.14	9 0.000E+00	W -0.236E-01 -0.235E-01 -0.232E-01 -0.232E-01 -0.228E-01 -0.228E-01 -0.228E-01 -0.209E-01 -0.209E-01 -0.209E-01 -0.192E-01 -0.192E-01 -0.192E-01 -0.174E-01 -0.154E-01 -0.154E-01 -0.135E-01 -0.	T 0.700E+03 0.613E+03 0.531E+03 0.531E+03 0.386E+03 0.386E+03 0.386E+03 0.386E+03 0.262E+03 0.262E+03 0.262E+03 0.207E+03 0.158E+03 0.158E+03 0.158E+03 0.158E+02 0.736E+02 0.378E+02 0.608E+01 0.608E+01 0.608E+01 0.219E+02 -0.463E+02	M 0.170E-08 0.875E+02 0.164E+03 0.229E+03 0.285E+03 0.285E+03 0.371E+03 0.371E+03 0.402E+03 0.427E+03 0.427E+03 0.445E+03 0.457E+03 0.465E+03 0.468E+03 0.468E+03 0.468E+03 0.462E+0	r 0.113E+04 0.105E+04 0.982E+03 0.982E+03 0.911E+03 0.842E+03 0.774E+03 0.779E+03 0.709E+03 0.586E+03 0.586E+03 0.528E+03 0.528E+03 0.473E+03 0.473E+03 0.373E+03 0.373E+03 0.373E+03 0.327E+03 0.322E+0	palier 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Figure G.32 : Formatted numerical results (start of results section)

- Results:
 - ✓ The stiffness matrix at pile head: stiffness coefficients ρ 1, ρ 2 and ρ 3 and the values of constants T0 and M0 at the head of the pile at point C₀. These stiffnesses are expressed in the local coordinate system of the pile, where:
 - \circ ρ 1 (kN/m): translation stiffness
 - ρ2 (kN): "crossed" translation/rotational stiffness
 - \circ ρ 3 (kN.m/rad): rotational stiffness
 - T0 (kN): translation force
 - M0 (kN.m): moment

This stiffness matrix can then be used for the Groupie+ calculation on a group of piles (importation into Groupie+ possible, see part H of the manual).

- ✓ The table of displacements and loads at all points on the pile:
 - Z: elevation (m)
 - X: abscissa in the pile local coordinate system (m)
 - y: absolute lateral deflection of the pile (m)
 - o g: projected soil free displacement (m)
 - w: rotation (rad)
 - T: shear force (kN)
 - M: bending moment (kN.m)
 - r: soil lateral reaction (kPa)
 - o palier (plateau): indication of reached plateau

At the end of this table, the extreme values are displayed for each type of result.

 \checkmark The buckling loads for each mode.

		SOLUTION
Changer	de flamhemer	t nour chaque mode
charges	de Tranbener	re pour chaque mode
	Mode	Charge
	001	0.273E+04
	002	0.303E+04
	003	U.4/3E+U4
	004	0.556E+04
	005	0.615E+04
	006	0.749E+04
	007	0.861E+04
	008	0.1062705
	009	0.1252+05
	010	0.1492705
	011	0.1092+05
	012	0.1916705
	013	0.2265±05
	014	0.2266405
	016	0.2995+05
	017	0 291E+05
	018	0.324E+05
	019	0.353E+05
	020	0.390E+05
	021	0.429E+05
	022	0.471E+05
	023	0.516E+05
	024	0.563E+05
	025	0.612E+05
	026	0.664E+05
	027	0.718E+05
	028	0.776E+05
	029	0.836E+05
	030	0.898E+05
	031	0.963E+05
	032	0.103E+06
	033	0.110E+06
	034	0.118E+06
	035	0.125E+06
	036	0.134E+06

Figure G.33 : Formatted numerical results (start of results section for a buckling calculation)

G.3.7.2.2. Numerical results - Results tables

Pile family : No family							Export	Back to the index
$\begin{bmatrix} T \\ M \end{bmatrix}_{head} = \begin{pmatrix} \rho_1 \\ \rho_2 \end{bmatrix}$		$_{d} + \begin{pmatrix} T_{0} \\ M_{0} \end{pmatrix}$			ρ ₁ ρ ₂ 1,3856E05 -1,3591E05	ρ ₃ T ₀ M ₀ 3,0733E05 0,00 0,00	Fcr : charge crim de Flambement (v = 1,00E01 FcrSup : charge	tique aleur exacte) 5 kN critique
×		Deflection	М	т	r	0(7)	de Flambement (be supérieure issue	de la
	0,00	0,00E00	0,00	0,00	. 0,00	0,0000 ^	méthode de Coin)	
	0,10	0,00E00	0,00	0,00	0,00	0,0000	= 1 KN	
	0,20	0,00E00	0,00	0,00	0,00	0,0000	X	D
	0,20	0,00E00	0,00	0,00	0,00	0,0000	0,00	-6,81E-01 🔨
	0,30	0,00E00	0,00	0,00	0,00	0,0000	0,20	-5,74E-01
	0,40	0,00E00	0,00	0,00	0,00	0,0000	0,40	-4,69E-01
	0,40	0,00E00	0,00	0,00	0,00	0,0000	0,60	-3,64E-01
	0,50	0,00E00	0,00	0,00	0,00	0,0000	0,80	-2,62E-01
	0,60	0,00E00	0,00	0,00	0,00	0,0000	1,00	-1,62E-01
	0,60	0,00E00	0,00	0,00	0,00	0,0000	1,20	-6,48E-02
	0,70	0,00E00	0,00	0,00	0,00	0,0000	1,40	2,94E-02
	0,80	0,00E00	0,00	0,00	0,00	0,0000	1,60	1,20E-01
	0,80	0,00E00	0,00	0,00	0,00	0,0000	1,80	2,08E-01
	0,90	0,00E00	0,00	0,00	0,00	0,0000	2,00	2,92E-01
	1,00	0,00E00	0,00	0,00	0,00	0,0000	2,33	4,22E-01
	1,00	0,00E00	0,00	0,00	0,00	0,0000	2,67	5,41E-01
	1,10	0,00E00	0,00	0,00	0,00	0,0000	3,00	6,47E-01
	1,20	0,00E00	0,00	0,00	0,00	0,0000	3,33	7,39E-01
	1,20	0,00E00	0,00	0,00	0,00	0,0000	3,67	8,18E-01
	1,30	0,00E00	0,00	0,00	0,00	0,0000	4,00	8,82E-01
	1,40	0,00E00	0,00	0,00	0,00	0,0000	4,33	9,32E-01
	1,40	0,00E00	0,00	0,00	0,00	0,0000	4,67	9,68E-01
	1,50	0,00E00	0,00	0,00	0,00	0,0000	5,00	9,91E-01
	1,60	0,00E00	0,00	0,00	0,00	0,0000	5,33	1,00E00
	1,60	0,00E00	0,00	0,00	0,00	0,0000	5,67	9,97E-01
	1,70	0,00E00	0,00	0,00	0,00	0,0000	6,00	9,83E-01
	1,80	0,00E00	0,00	0,00	0,00	0,0000	6,33	9,58E-01
	1,80	0,00E00	0,00	0,00	0,00	0,0000	6,67	9,24E-01
	1,90	0,00E00	0,00	0,00	0,00	0,0000	7,00	8,81E-01
	2,00	0,00E00	0,00	0,00	0,00	0,0000	7,33	8,32E-01
	2,00	0,00E00	0,00	0,00	0,00	0,0000	7,67	7,77E-01
	2,17	0,00E00	0,00	0,00	0,00	0,0000	8,00	6.555.01
	2,33	0,00E00	0,00	0,00	0,00	0,0000	0,33	0,000-01
	2,33	0,00E00	0,00	0,00	0,00	0,0000	8,67	5,50E-01
	2,50	0,00E00	0,00	0,00	0,00	0,0000 ~	9,00	0,24E-01

Figure G.34 : Numerical results – Table of results

These are the same results as those detailed for the formatted results in chapter G.3.7.2.1, but presented this time in table form and without the data reminder part. Some results are not displayed in these tables, such as the rotations for example.

G.3.7.2.3. Graphical results - Main curves

Figure G.35 : Graphical results – Main curves

Note: these main curves are not accessible for a "specific buckling calculation".

The main curves are the graphical display of 4 types of results:

- the lateral displacement of the pile (m) versus the local abscissa of the pile x(m);
- the **bending moment** of the pile (kN.m) versus the local abscissa of the pile x(m);
- the **shear force** in the pile (kN) versus the local abscissa of the pile x(m);
- the lateral soil reaction (kPa) versus the local abscissa of the pile x(m).

The minimum and maximum values of the curve are given under each curve.

This window also includes a reminder of the family defined for the pile (on top of the window), and a Groupie parameters button to access the pile head stiffness matrix (stiffness coefficients ρ 1, ρ 2 and ρ 3 and the values of pile head constants T0 and M0):

Figure G.36 : Groupie+ parameters

G.3.7.2.4. Graphical results - Curves related to buckling

Figure G.37 : Graphical results: Curves related to buckling

In this window, Piecoef+ gives the critical buckling load value FCR (kN) and three sets of curves:

- the critical buckling mode;
- the 2nd order calculation with amplification of the displacements under an axial force F applied at pile head, expressed as a fraction of the critical buckling load;
- the 2nd order calculation with amplification of the moments under an axial force F applied at pile head.

G.3.7.3. Results for multiple loads at pile head

For a calculation with multiple loads at pile head, the results are presented in a slightly different way:

- on the one hand, Piecoef+ displays the results for the various load cases at pile head,
- on the other hand, the Groupie+ parameters (stiffness matrix at the head of the pile) and the curves related to buckling are not available.

The subchapters below detail the modifications in the display of the results (with respect to the calculation cases without multiple loads at pile head) for each type of results presentation.

G.3.7.3.1. Formatted numerical results

With respect to the results given in chapter G.3.7.2.1:

- The formatted file includes no stiffness matrix at pile head.
- The formatted file successively includes detailed results for each of the load cases at pile head.
- The formatted file does not include additional results related to buckling.

			DLUTION						
Cha	argement e	n tête - d	tas de charge	n° 0001	T = 4000.0 M = 5000.0	10 10	>		
Dép	olacements	et sollid	citations en t	out point du	pieu				
Notations Z : cote × : absc y : flèc w : rote g : défo M : mome T : effc r : réac	e (longueu cisse – re che absolu ation (=dy ormée libr ent fléchi ort tranch ction laté	n) père local e latérale /dX) e du sol p ssant (for ssant (force rale du so	l du pieu (lon e du pieu (lon projetée (long ce x longueur e) ol (force / un	gueur) gueur) ueur)) ité de surfa	:e)				
Elément	z	×	У	g		т	м	r	palier
001	2.000	0.000	0.176E-01	0.000E+00	-0.434E-02	0.400E+04	0.500E+04	0.920E-02	1
001	1.925	0.075	0.173E-01	0.000E+00	-0.433E-02	0.400E+04	0.530E+04	0.903E-02	1
002	1.850	0.150	0.170E-01	0.000E+00	-0.431E-02	0.401E+04	0.560E+04	0.886E-02	1
002	1.775	0.225	0.167E-01	0.000E+00	-0.430E-02	0.403E+04	0.590E+04	0.869E-02	1
002	1.700	0.300	0.163E-01	0.000E+00	-0.428E-02	0.404E+04	0.620E+04	0.852E-02	1
003	1.700	0.300	0.163E-01	0.000E+00	-0.428E-02	0.404E+04	0.620E+04	0.852E-02	1
003	1.625	0.375	0.160E-01	0.000E+00	-U.427E-02	0.407E+04	0.651E+04	0.835E-02	1
004	1.550	0.450	0.157E-01	0.000E+00	-0.425E-02	0.410E+04	0.682E+04	0.819E-02	1
004	1.475	0.525	0.154E-01	0.000E+00	-0.423E-02	0.414E+04	0.712E+04	0.802E-02	1
004	1.400	0.600	0.151E-01	0.000E+00	-0.422E-02	0.418E+04	0.744E+04	0.786E-02	1
005	1.400	0.600	0.151E-01	0.000E+00	-0.422E-02	0.418E+04	0.744E+04	0.786E-02	1
005	1.325	0.675	0.148E-01 0.144E-01	0.000E+00	-U.420E-02	0.423E+04	0.775E+04	0.769E-02	1
006	1.250	0.750	0.144E-01	0.000E+00	-0.418E-02	0.428E+04	0.807E+04	0.753E-02	1
006	1.175	0.825	0.141E-01	0.000E+00	-0.416E-02	0.434E+04	0.839E+04	0.737E-02	1
006	1.100	0.900	0.138E-01	0.000E+00	-0.414E-02	0.440E+04	0.872E+04	0.720E-02	1
007	1.100	0.900	0.138E-01	0.000E+00	-U.414E-02	0.440E+04	0.872E+04	0.720E-02	1
007	0.950	1.050	0.132E-01	0.000E+00	-0.409E-02	0.455E+04	0.939E+04	0.688E-02	1
008	0.950	1.050	0.132E-01	0.000E+00	-0.409E-02	0.455E+04	0.939E+04	0.688E-02	1
008	0.875	1.125	0.129E-01	0.000E+00	-0.407E-02	0.463E+04	0.974E+04	0.672E-02	1
008	0.800	1.200	0.126E-01	0.000E+00	-0.405E-02	0.472E+04	0.101E+05	0.656E-02	1
009	0.800	1.200	0.1266-01	0.000E+00	-0.405E-02	0.4/2E+04 0.481E+04	0.101E+05	0.656E-02	1
009	0.650	1.350	0.120E-01	0.000E+00	-0.399E-02	0.491E+04	0.108E+05	0.625E-02	1
	0.650	1.350	0.120E-01	0.000E+00	-0.399E-02	0.491E+04	0.108E+05	0.625E-02	1
010		1.425	0.117E-01	0.000E+00	-0.397E-02	0.502E+04	0.112E+05	0.609E-02	1
010	0.575	1 500	0.1145.01	0.0005.000	0 2045 52	and the second state of th	A set of the set of		1
010 010 010	0.575	1.500	0.114E-01	0.000E+00	-0.394E-02	0.512E+04	0.116E+05	0 5945-02	1
010 010 010 011 011	0.575 0.500 0.500 0.425	1.500 1.500 1.575	0.114E-01 0.114E-01 0.111E-01	0.000E+00 0.000E+00 0.000E+00	-0.394E-02 -0.394E-02 -0.391E-02	0.512E+04 0.524E+04	0.116E+05 0.120E+05	0.594E-02 0.579E-02	1
010 010 010 011 011 011	0.575 0.500 0.500 0.425 0.350	1.500 1.500 1.575 1.650	0.114E-01 0.114E-01 0.111E-01 0.108E-01	0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.394E-02 -0.394E-02 -0.391E-02 -0.388E-02	0.512E+04 0.524E+04 0.536E+04	0.116E+05 0.120E+05 0.123E+05	0.594E-02 0.579E-02 0.563E-02	1 1 1
010 010 011 011 011 011 012	0.575 0.500 0.500 0.425 0.350 0.350	1.500 1.500 1.575 1.650 1.650	0.114E-01 0.114E-01 0.111E-01 0.108E-01 0.108E-01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.394E-02 -0.394E-02 -0.391E-02 -0.388E-02 -0.388E-02	0.512E+04 0.524E+04 0.536E+04 0.536E+04	0.116E+05 0.120E+05 0.123E+05 0.123E+05	0.594E-02 0.579E-02 0.563E-02 0.563E-02	1 1 1 1
010 010 011 011 011 012 012	0.575 0.500 0.500 0.425 0.350 0.350 0.275	1.500 1.500 1.575 1.650 1.650 1.725	0.114E-01 0.114E-01 0.111E-01 0.108E-01 0.108E-01 0.105E-01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.394E-02 -0.394E-02 -0.391E-02 -0.388E-02 -0.388E-02 -0.388E-02	0.512E+04 0.524E+04 0.536E+04 0.536E+04 0.536E+04	0.116E+05 0.120E+05 0.123E+05 0.123E+05 0.128E+05	0.594E-02 0.579E-02 0.563E-02 0.563E-02 0.548E-02	1 1 1 1
010 010 011 011 011 012 012 012 012 012	0.575 0.500 0.425 0.350 0.350 0.275 0.200	1.500 1.500 1.575 1.650 1.650 1.725 1.800	0.114E-01 0.114E-01 0.108E-01 0.108E-01 0.108E-01 0.105E-01 0.102E-01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.394E-02 -0.394E-02 -0.391E-02 -0.388E-02 -0.388E-02 -0.385E-02 -0.385E-02 -0.382E-02	0.512E+04 0.524E+04 0.536E+04 0.536E+04 0.549E+04 0.549E+04 0.562E+04	0.116E+05 0.120E+05 0.123E+05 0.123E+05 0.128E+05 0.132E+05 0.132E+05	0.594E-02 0.579E-02 0.563E-02 0.563E-02 0.548E-02 0.533E-02	1 1 1 1
010 010 011 011 011 012 012 012 012 013 013	0.575 0.500 0.425 0.350 0.275 0.200 0.200 0.200	1.500 1.500 1.575 1.650 1.650 1.725 1.800 1.800 1.875	0.114E-01 0.114E-01 0.111E-01 0.108E-01 0.108E-01 0.105E-01 0.102E-01 0.102E-01 0.994E-02	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.394E-02 -0.394E-02 -0.391E-02 -0.388E-02 -0.388E-02 -0.385E-02 -0.385E-02 -0.382E-02 -0.382E-02 -0.382E-02	0.512E+04 0.524E+04 0.536E+04 0.536E+04 0.549E+04 0.562E+04 0.562E+04 0.562E+04	0.116E+05 0.120E+05 0.123E+05 0.123E+05 0.128E+05 0.132E+05 0.132E+05 0.132E+05	0.594E-02 0.579E-02 0.563E-02 0.563E-02 0.548E-02 0.533E-02 0.533E-02 0.538E-02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
010 010 011 011 011 012 012 012 012 013 013 013	0.575 0.500 0.425 0.350 0.275 0.200 0.200 0.125 0.050	1.500 1.500 1.575 1.650 1.650 1.725 1.800 1.800 1.875 1.950	0.114E-01 0.114E-01 0.111E-01 0.108E-01 0.108E-01 0.105E-01 0.102E-01 0.102E-01 0.994E-02 0.966E-02	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.394E-02 -0.394E-02 -0.391E-02 -0.388E-02 -0.388E-02 -0.382E-02 -0.382E-02 -0.382E-02 -0.375E-02 -0.375E-02	0.512E+04 0.524E+04 0.536E+04 0.536E+04 0.549E+04 0.562E+04 0.562E+04 0.562E+04 0.576E+04 0.590E+04	0.116E+05 0.120E+05 0.123E+05 0.123E+05 0.128E+05 0.132E+05 0.132E+05 0.136E+05 0.140E+05	0.594E-02 0.579E-02 0.563E-02 0.563E-02 0.548E-02 0.533E-02 0.533E-02 0.518E-02 0.518E-02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
010 010 011 011 012 012 012 012 013 013 013 013 014	0.575 0.500 0.425 0.350 0.275 0.200 0.200 0.200 0.125 0.050 0.050	1.500 1.500 1.575 1.650 1.650 1.725 1.800 1.800 1.875 1.950 1.950	0.114E-01 0.114E-01 0.108E-01 0.108E-01 0.105E-01 0.102E-01 0.102E-01 0.994E-02 0.966E-02	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.394E-02 -0.391E-02 -0.381E-02 -0.388E-02 -0.388E-02 -0.382E-02 -0.382E-02 -0.382E-02 -0.375E-02 -0.375E-02	0.512E+04 0.524E+04 0.536E+04 0.536E+04 0.549E+04 0.562E+04 0.562E+04 0.576E+04 0.570E+04 0.590E+04	0.116E+05 0.120E+05 0.123E+05 0.123E+05 0.123E+05 0.132E+05 0.132E+05 0.136E+05 0.140E+05	0.594E-02 0.579E-02 0.563E-02 0.563E-02 0.548E-02 0.533E-02 0.533E-02 0.518E-02 0.504E-02 0.504E-02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
010 010 011 011 011 012 012 012 013 013 013 013 014 014	0.575 0.500 0.425 0.350 0.275 0.200 0.200 0.125 0.050 0.050 0.050	1.500 1.500 1.575 1.650 1.725 1.800 1.800 1.875 1.950 2.025	0.114E-01 0.114E-01 0.114E-01 0.108E-01 0.108E-01 0.102E-01 0.102E-01 0.994E-02 0.966E-02 0.966E-02	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.394E-02 -0.391E-02 -0.391E-02 -0.388E-02 -0.388E-02 -0.385E-02 -0.382E-02 -0.382E-02 -0.387E-02 -0.379E-02 -0.375E-02 -0.372E-02 -0.372E-02	0.512E+04 0.524E+04 0.536E+04 0.536E+04 0.549E+04 0.562E+04 0.562E+04 0.576E+04 0.590E+04 0.590E+04	0.116E+05 0.120E+05 0.123E+05 0.123E+05 0.128E+05 0.132E+05 0.132E+05 0.136E+05 0.140E+05 0.140E+05 0.145E+05	0.594E-02 0.579E-02 0.563E-02 0.548E-02 0.533E-02 0.533E-02 0.518E-02 0.504E-02 0.504E-02 0.504E-02 0.504E-02 0.489E-02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure G.38 : Formatted numerical results for a multiple load case at pile head

G.3.7.3.2. Numerical results - Results tables

With respect to the results given in chapter G.3.7.2.2:

- this time, a selection list is available at the top of the window to select the load case which results shall be displayed.
- the stiffness matrix at pile head is not displayed.

⊡ . File						1
SPile family : No	o family Head load case #1 - T=4000,00 M=5000,00				Export Export all the load ca	ses 🙀 Back to the index
	A	teflection	M. Contraction of the second s	т	r	g(z)
	0,00	1,76E-02	5000,00	4000,00	0,01	0,0000
	0,07	1,73E-02	5300,07	4002,81	0,01	0,0000
	0,15	1,70E-02	5600,56	4011,25	0,01	0,0000
	0,15	1,70E-02	5600,56	4011,25	0,01	0,0000
	0,23	1,67E-02	5901,90	4025,31	0,01	0,0000
	0,30	1,63E-02	6204,50	4044,99	0,01	0,0000
	0,30	1,63E-02	6204,50	4044,99	0,01	0,0000
	0,38	1,60E-02	6508,79	4070,31	0,01	0,0000
	0,45	1,57E-02	6815,19	4101,24	0,01	0,0000
	0,45	1,57E-02	6815,19	4101,24	0,01	0,0000
	0,53	1,54E-02	7124,11	4137,80	0,01	0,0000
	0,60	1,51E-02	7436,00	4179,99	0,01	0,0000
	0,60	1,51E-02	7436,00	4179,99	0,01	0,0000
	0,68	1,48E-02	7751,25	4227,80	0,01	0,0000
	0,75	1,44E-02	8070,31	4281,24	0,01	0,0000
	0,75	1,44E-02	8070,31	4281,24	0,01	0,0000
	0,82	1,41E-02	8393,58	4340,30	0,01	0,0000
	0,90	1,38E-02	8721,49	4404,99	0,01	0,0000
	0,90	1,38E-02	8721,49	4404,99	0,01	0,0000
	0,97	1,35E-02	9054,47	4475,30	0,01	0,0000
	1,05	1,32E-02	9392,93	4551,23	0,01	0,0000
	1,05	1,32E-02	9392,93	4551,23	0,01	0,0000
	1,12	1,29E-02	9737,29	4632,79	0,01	0,0000
	1,20	1,26E-02	10088,00	4719,98	0,01	0,0000
	1,20	1,26E-02	10088,00	4719,98	0,01	0,0000
	1,27	1,23E-02	10445,40	4812,79	0,01	0,0000
	1,35	1,20E-02	10810,00	4911,23	0,01	0,0000
	1,35	1,20E-02	10810,00	4911,23	0,01	0,0000
	1,43	1,17E-02	11182,30	5015,29	0,01	0,0000
	1,50	1,14E-02	11562,50	5124,98	0,01	0,0000
	1,50	1,14E-02	11562,50	5124,98	0,01	0,0000
	1,57	1,11E-02	11951,10	5240,29	0,01	0,0000
	1,65	1,08E-02	12348,70	5361,23	0,01	0,0000
	1,65	1,08E-02	12348,70	5361,23	0,01	0,0000
	1,73	1,05E-02	12755,50	5487,79	0,01	0,0000
	1,80	1,02E-02	13172,00	5619,97	0,01	0,0000
	1,80	1,02E-02	13172,00	5619,97	0,01	0,0000
	1,88	9,94E-03	13598,60	5757,79	0,01	0,0000
	1,95	9,66E-03	14035,80	5901,22	0,01	0,0000

Figure G.39 : Table of results for a multiple load at pile head case

G.3.7.3.3. Graphical results - Main curves

With respect to the results given in chapter G.3.7.2.3:

- this time, a choice list is available at the top of the window to select the load case which results shall be displayed.
- the "Groupie+ parameters" button is shaded: the stiffness matrix at pile head is not accessible.

Figure G.40 : Main curves for a multiple loads at pile head case

G.3.7.3.4. Graphical results - Curves related to buckling

The buckling results are not available for the calculation case with multiple loads at pile head: these types of results are therefore not accessible in this case (button shaded).

G.4. EXAMPLES OF PIECOEF+ CALCULATIONS

Piecoef+ module can perform several types of calculations related to a pile submitted to transverse loads:

- the stiffness coefficients calculation (for further use in combination with Groupie+ module);
- calculation of the loads and displacements along a pile (considering a g(z) soil displacement or not);
- the buckling and the second order effects calculation.

The 4 examples below illustrate these types of calculations.

G.4.1. Example 1: Calculation of a pile submitted to (T, M) loading at pile head

This example studies a pile submitted to side forces at the head.

- Firstly, we will study this pile assuming that the pile is vertical and that the behaviour of the soil is elastic.
- Secondly, we will consider the same pile with an elastoplastic behaviour of the soil.
- Lastly, we will introduce an inclination for the pile.

G.4.1.1. Step 1: Vertical pile and elastic behaviour of the soil

• For this first step, we will consider a vertical pile with a diameter of 60 cm and a length of 12 m, passing through 2 soil layers (sandy fill then marly substratum) the behaviour of which is considered as elastic. This pile will be submitted to a horizontal force at pile head of 700 kN and we assume null prescribed rotation at pile head (beam clamping in a footing).

G.4.1.2. Data input

When the application is opened, Foxta proposes to:

- create a new project,
- open an existing project,
- automatically open the last project used.

For this example:

- Choose to create a new project by selecting
 New project radio-button.
- Click OK button.

G.4.1.2.1. New project wizard

"File" box

- Complete the path of the project by clicking _____ button.
- Give and save the name of the file.

"Project" box

- Enter a project title
- Enter a project number
- Add a comment if necessary
- Leave "Use the soil database" box unticked (the database will not be used in this example), and click Next button.

📅 New project wizard	×
	New project
File File Scuments	Logiciels TerrasoNFoxtav3\picoefMITO\Exemple 01 a.fxp
Project	
Project title (*) :	Example 01a
Project number (*) :	Example 01a
Commonio .	
(*) These fields are requ	uired Use the soil database Back Next

G.4.1.2.2. New project wizard: Choice of modules

In "Modules to use" window, select Piecoef+ module then click Create button.

Piecoef+ data input window is then displayed.

Complete the various tabs with the data proposed.

G.4.1.2.3. "Parameters" tab

Pile 1/1 : Example 01a	sol displacement	 i
	General s	ettings
Calculation type		
Pile calculation under transverse loads	~	
based on pressuremeter data input (elastic)		~
with permanent loads		~
Calculation parameters	Evample 01a	
Reference elevation (m)		0.00
Inclination angle of the pile (*)		0,00 0
Pile family	No family (Load inc	crementation
	Calculation	

This tab includes two boxes:

"Calculation type" box: select

- drop-down list 1: Pile calculation under transverse loads
- drop-down list 2: based on pressuremeter data input (elastic)
- drop-down list 3: with permanent loads

"Calculation parameters" box:

- Calculation title: Example 01a
- Reference elevation (m): 0.0 m
- Inclination angle of the pile: 0° (corresponding to a vertical pile)
- Pile family: none for this example
- Load incrementation: here, we will conserve the values proposed by default.

To go to the next tab, click either the name of the "Soil/Pile" tab or button.

G.4.1.2.4. "Soil/Pile" tab

6-				\$ Pile 1/1 : Exem	ple 01a 🕞	ads on nie 🗌 🖉 Free o	(7) soil displacement			• • 1
-4				- Soil lavere definitio						Soil/pile
1				Nº Nº	Name	Colour	Z	E	a	В
N-				1	Sandy fill	00000	-8,00	5,00E03	0,33	0,60
Z (m)				2	Marly substratum		-12,00	2,00E04	0,50	0,60
o			Reference elevation : 0.0 m							
100	-									
1.1										
-4										
1										
<u>р.</u>										
ά- -			-8.0 m	2 Layers r	number : 2		Database		- 1	📬 失 💶
				Dila dia sestia stisa			<u> </u>			
5				Consideration	of shear force					
				Consideration	ama	b		FI		
<u>+-</u>	1		-12.0 m	Sandy fill	anc		8,00	6,36E04	30)
				Marly substratum			4,00	6,36E04	15	;
<u>له -</u>										
4										
16										
-18										
-										
Elements		Optic	ons							
Symb.	Nomination	Visible 🦳 🤇	। २ २ 😤 📷	Divisions	a number : 45					<u> </u>
	Sol	A								
			cross-section			Calculatio	n			
	Pile					Star	t calculation 😥 See res	ults		
		_ 🖄								

This tab concerns the definition of the soil layers and the discretisation of the pile.

"Soil layers definition" box:

In this example, there are 2 soil layers to be defined.

The data to be entered is given in the table below.

Important: by convention, in Piecoef+, the base of the piles is defined at the base of the last soil layer. To define a pile with a length of 12 m, define the soil cross-section down to a depth of 12 m.

Click 🗣 button to create each layer.

The data to be entered is as follows:

Name	Z _{base} (m) Bottom level of the layer	E_M (kPa) Pressuremeter modulus	α Menard's rheologic coefficient	B (m) Drilling diameter
Sandy fill	-8.0	5,000	0.33	0.60
Marly substratum	-12.0	20,000	0.50	0.60

Note: the colour of each layer is proposed automatically but can be modified.

Piecoef+ allows saving these soil layers in the database of the project and/or in the global soil database by clicking Database button.

This allows the soil layers to be saved with their parameters to avoid re-entering them when using another module for the same Foxta project or when creating another Foxta project.

The database will not be used in this example. Its use is however described in detail in part C of the manual.

"Pile discretisation" box:

The layers defined previously are automatically transferred to this table.

The data to be entered is given in the table below.

Here the "Consideration of shear force" box is left unticked.

Name	h (m) Soil thickness (completed automatically)	EI (kN/m²) Product of inertia of pile	n Subdivisions number inside the layer
Sandy fill	8.0	63600	30
Marly substratum	4.0	63600	15

The EI product defined here corresponds to a 60 cm diameter pile with a modulus of 10 GPa.

The number of subdivisions n controls the density of the finite element mesh considered for the pile. Do not hesitate to refine the mesh as this does not greatly affect the calculation time and guarantees a sufficiently accurate result. For this example, the number of subdivisions has been defined as proportional to the thickness of each layer so that a constant calculation step of 4/15 = 0.27 m can be used.

G.4.1.2.5. "External loads on pile" tab

"Point loads normal to the pile" box:

The data to be entered is as follows:

- load elevation Z (m) (deduced from the elevations entered in the "Soil/Pile" tab)
- point side force T (kN)
- point bending moment M (kN.m)
- restoring point stiffness in lateral translation K (kN/m)
- restoring point stiffness in rotation C (kN.m/rad)

To apply a horizontal force of T = 700 kN to the head of the pile, the data to enter is as follows:

N°	Z (m)	T (kN)	M (kN.m)	K (kN.m)	C (kN.m/rad)
0	0.00	700.00	0.00	0.00	0.00
1	-8.00	0.00	0.00	0.00	0.00
2	-12.00	0.00	0.00	0.00	0.00

Note: **We** button displays a help diagram which gives the sign convention and the meanings of the parameters required:

"Prescribed displacements at pile head" box:

The data to be entered is as follows:

- prescribed translation y (m)
- prescribed rotation ω (rad)

Here, a null rotation condition is imposed on the head of the pile:

	Tick box	Values
y (m)	No	-
ω (rad)	Yes	0.00

"Multiple loads at the pile head" box:

• Keep "Activate the multiple loads at pile head" box unticked.

"Distributed loads normal to the pile" box:

• Keep "Activate distributed loads" box unticked.

G.4.1.2.6. "Free g(z) soil displacement" tab

"g(z) definition" box:

• Keep the "Define a g(z) displacement" box unticked.

Indeed, this function will not be used here.

G.4.1.3. Calculation and results

G.4.1.3.1. Calculation

Whilst the tabs are not all correctly completed, the button starting the calculation is marked with a red cross: Start calculation

Once all the data is correctly entered, **Start calculation** button becomes active (this button is accessible from all the tabs).

Clicking this button starts the calculation.

To access the results in table and graphical form, click veresults button.

G.4.1.3.2. Results

The types of results available (numerical and graphical) are given below:

	Calculated : 2 seconds ago (Calculation date : Dec 2, 2015 4:06:18 PM)	Back to the data
	Formatted results	
- Graphical results	Main curves	

For example, click "Main curves" button.

Forces and displacements

Results obtained:

Deflection: lateral displacement (cm)		Bending m (kN.ı	oment M m)	Shear f T (k	orce N)	Lateral soil reaction p (kPa)		
Min	Max	Min	Max	Min	Max	Min	Max	
0.1	2.4	-725	151	-47	700	-39	563	

The results obtained are consistent with those expected for a pile submitted to a horizontal force at the head, with simulation of an elastic behaviour of the soil and null rotation condition at the head. Indeed:

- We find the prescribed horizontal force of 700 kN at the head.
- The lateral displacement is maximum, as expected, at the head of the pile, with 2.4 cm.
- The moment is also maximum at the head of the pile with an absolute value of 725 kN.m (beam clamping moment).
- Lastly, the lateral reaction is also maximum at the head of the pile with 563 kPa.

Exporting data:

The 🛃 button allows the user to export the curves to an image:

G.4.1.3.3. Stiffness coefficients

These coefficients will not be used in this example (as we are not considering the behaviour of a pile studied within a group of piles with the Groupie+ module), but we will nevertheless comment on them for information purposes.

To obtain the stiffness results, click Groupie parameters button.

These stiffnesses are expressed in the local coordinate system of the pile, where:

- ρ1 (kN/m): translation stiffness
- ρ2 (kN): "crossed" translation/rotation stiffness
- ρ3 (kN.m/rad): rotational stiffness
- T0 (kN): translation force
- M0 (kN.m): moment

Return to the window presenting the various results:

Click Back to the index button to return to the screen allowing the various types of results to be selected.

G.4.1.3.4. Calculation variant

We will now do the same calculation, but replacing the prescribed rotation condition (null) at the head of the pile by a very high restoring stiffness value for head rotation.

Record your project, then do a "save as" giving it a different name: "Example 01abis" for example.

To modify the data, click **Back to the data** button and return to "External loads on pile" tab:

- Untick "Prescribed rotation ω " box to eliminate the null rotation condition at the head.
- Define C = 1^e10 kN.m/rad at Z = 0 m (at the head of the pile): very high value for the restoring stiffness for head rotation. This is an alternative way of simulating blocking in rotation.

Point loads nor			o Tree g(z) soir uispiacemen			
oint loads nor					External	loads on pi
	mal to the pile					
N°		Z	т	М	к	C 🔽
0		0,00	700,00	0,00	0,00000	1,00E10
1		-8,00	0,00	0,00	0,00E00	0.00500
2		-12,00	0,00	0,00	0,00600	0,00E00
Prescribed di	splacements a	t pile head				
Prescribed di	splacements a	t pile head wed translation y (m)	0,00 🗘	Prescribed rotation ω (r	ad)	0,00 🗘
Prescribed di luttiple loads a	splacements a	t pile head 	0.00 C	Prescribed rotation ω (r	ad)	0,00 🗘
Prescribed di ultiple loads a Activate th	splacements a Prescrit at the pile head ie multipie load	t pile head 	0,00 🗘 🤇	Prescribed rotation w (r	ad)	0,00 \$
Prescribed di	splacements a Prescrit at the pile head is multiple load	t pile head	0.00 🖏	Prescribed rotation ω (r	ad)	0.00 C
Prescribed di utiple loads a Activate th istributed load	splacements a Prescrit It the pile head is normal to the primited lead	t pile head ed translation y (m) ing at pile head e pile	0.00 \$	Prescribed rotation w (r	adj	0.00 C
Prescribed di luttiple loads a Activate th istributed load Activate di	splacements a Prescrit t the pile head ds normal to th stributed load	t pile head	0.00 \$	Prescribed rotation ω (r	ad)	0.00 💭
Prescribed di luttiple loads a Activate th istributed load Activate di	splacements a Prescrit t the pile head e multiple load ds normal to th stributed load	t ple head	0.00 0	Prescribed rotation w (r	ad)	0.00 \$
Prescribed di ultiple loads a Activate th istributed loac Activate di	splacements a Prescrit tt the pile head e multiple load ds normal to th stributed loads	it pile head	0,00 \$	Prescribed rotation w (r	ad)	0.00 0
Prescribed di ultiple loads a Activate th istributed load	splacements as Prescrit tt the pile head e multiple load ds normal to th stributed loads	t pie head ed translation y (m) img at pie head e pile s	0.00 \$	Prescribed rotation w (r	adj	0.00 🗘

Start the calculation by clicking v Start calculation button.

Then click veresults button:

The graphical results, "Main curves" show that the results are identical for the forces and displacements: indeed a very high restoring stiffness at the head leads to the same behaviour for the pile as a prescribed null rotation at the head.

However, certain "Stiffness coefficients" ("Groupie+ parameters") have been affected:

In fact, these stiffness coefficients represent the apparent behaviour at the head of the "pile + soil + point supports" system. Thus, the values obtained represent the behaviour of a pile the head of which will always be blocked in rotation irrespective of the load applied.

However, when this blocking in rotation was simulated by a "null prescribed rotation", this was considered by the calculation engine as a "load case" and not as a support condition.

terrasol

G.4.1.4. Step 2: Elastoplastic soil

We will now do the same example as above but adopting an elastoplastic behaviour for the soil (defined from pressuremeter results).

G.4.1.4.1. Modification of the data

Click 🤇 💘 Back to the data button.

Save the example above with a new name ("Example 01b" for example), then modify the data as follows.

Return to "Parameters" tab:

"Calculation type" box:

- In the second drop-down list, select "Based on pressuremeter data input (elastoplastic)".
- In the third drop-down list, select "If permanent loads applied at pile head are dominant":

Vile 1/1 : Example 01b		🗣 💽 🕯
🕈 Parameters 🛛 😳 Soil/pile 🛛 Exte	rnal loads on pile 🛛 🕈 Free g(z) soil displacement	
		General setting
Calculation type		
Pile calculation under tra	insverse loads	~
based on pre	ssuremeter data input (elasto-plastic)	~
or if p	ermanent loads applied at pile head are dominant	~
Calculation parameters		
Calculation title	Example 01b	
Reference elevation (m)		0,00
Inclination angle of the pile (*)		30,00
Pile family	No family	· ·
		Load incrementation
	Calculation	
	Start calculation See results	

The definition of the soil layers must be completed to take the elastoplastic behaviour into account (moreover, the red cross on the "Soil/Pile" tab clearly indicates that the data is incomplete): click "Soil/Pile" tab.

New columns appear in the upper table and must be completed: these are the PI* (net limit pressure) and Pf* (net creep pressure) values for each layer.

Name	Z _{base} (m)	Z _{base} (m) E _M (kPa)		B (m)	Pf* (kPa)	PI* (kPa)
Sandy fill	-8.00	5,000	0.33	0.60	300	500
Marly substratum	-12.00	20,000	0.50	0.60	2000	3000

Pile 1/1 : E	xample 01b	vool loodo op vik		dianlocomost				• • 1
ai ametei s		inanuaus on pir	e 01166 g(2) Soli	uispiacement			C.	sil/mil
i layers de	finition						50	ni pii
N°	Name	Colour	Z _{base}	α	В	P _f *	Pl*	
1	Sandy fill		-8,00	5,00E03	0,33	0,60	300,00	500,0
2	Marly substratum		-12,00	2,00E04	0,50	0,60	2000,00	3000,0
								<u></u>
? Lay	ers number : 2		Da	tabase			+ í 🐚	· 🖑 🐔
2 Lay	ers number : 2		Da	itabase			•	•
Lay discretisa	ers number : 2		Da	ltabase			• 1	
2 Lay discretisa Considera	ers number : 2 tion ation of shear force Name		De De	tabase	EI		•	•
2 Lay discretisa Considera dy fil	ers number : 2 tion tion of shear force Name		h 8,0	ttabase	El	6,36E04	n 30	
2 Lay discretisa Considera dy fill ly substrat	ers number : 2 tion tion of shear force Name um		h 8,(ttabase	El	6,36E04 6,36E04	n 30 15	
Considera dy fil y substrat	ers number : 2 tion tion of shear force Name um		h 8,0	tabase	El	6,36E04 6,36E04	n 30 15	
2 Lay discretisa Considera dy fil y substrat	ers number : 2 tion — Nome Wim		h 8,(tabase	El	6,36E04 6,36E04	n 30 15	·
2 Lay discretisa Considera dy fil y substrat	ers number : 2 tion — tion of shear force Name um		h 8,0	100 100	El	6,36E04 6,36E04	n 30 15	
Lay discretisa Considera dy fil ty substrat	ers number : 2 tion		h 8,(tabase	El	6,36E04 6,36E04	n 30 15	
2 Lay discretisa Considera dy fil ly substrat	ers number : 2 tion		h 8,(tabase	El	6,36E04 6,36E04	n 30 15	
2 Lay discretisa Considera idy fil ty substrat	ers number : 2 tion Non of shear force Name		h 8,0	tabase 00 00	EI	6,36E04 6,36E04	n 30 15	
2 Lay discretisa Considera dy fil ty substrat	ers number : 2 tion tion of shear force Name um		h 8.(4,(11222	El	6,36E04 6,36E04	n 30 15	
2 Lay discretisa Considera dy fa ty substrat	ers number : 2 tion tion of shear force Name um		h 8,(tabase	El	6,36E04 6,36E04	n 30 15	
2 Lay discretisa Considera dy fa ty substrat	ers number : 2 tion tion of shear force Name		h 8,(1455380 100	El	6,36E04 6,36E04	n 30 15	
2 Lay discretisa considera idy fil ty substrat	ers number : 2 tion Name Name um		h 8,(1abase	El	6,36E04 6,36E04	n 30 15	
Considerative substrated by fate	ers number : 2 tion		h 8,(4,0	1abase	El	6,36E04 6,36E04	n 30 15	

Now, start the calculation by clicking value Start calculation button.

Then click See results button.

G.4.1.4.2. Results

Main curves: Forces and displacements

Elastic calculation (reminder of previous results):

Elastoplastic calculation (results of new calculation):

Comparison of forces and displacements: Elastic/elastoplastic calculation:

	Defle lat displa (c	ection: eral cement cm)	Bending moment M (kN.m)		Shea T (r force (kN)	Lateral soil reaction p (kPa)		
	Min	Max	Min	Max	Min	Max	Min	Max	
Elastic calculation	-0.1	2.4	-725	-151	-47	700	-39	563	
Elasto- plastic calculation	-0.2	5.6	-1065	296	-92	700	-92	300	

Note that the elastoplastic behaviour has introduced a "limit" for the soil's lateral passive earth pressure (plasticity): the soil cannot bear the same loading as in elastic behaviour:

- The lateral reaction is limited to the (net) creep pressure value and this limit is effectively reached over almost 4 m at the head of the pile.
- The displacements are higher (the displacement value at the head has more than doubled).
- The loads in the pile have also increased: moments and shear forces (except for the value at the head, corresponding to the 700 kN value prescribed in the data).

Stiffness coefficients:

The stiffness coefficients have changed with respect to the previous step. The partial plastification of the soil has thus led to a reduction of the "elastic" part of this stiffness matrix, represented here by coefficients ρ_1 , ρ_2 and ρ_3 . Also, the nonlinearity of the behaviour of the system generates a non-null term at origin, represented here by terms T_0 and M_0 .

G.4.1.5. Step 3: Inclined pile case

We will now start from the previous example (with elastoplastic behaviour) and introduce a pile inclination of 30° from the vertical.

G.4.1.5.1. Taking 30° inclination into account

To modify the data, click (💘 Back to the data) button and return to "Parameters" tab:

"Calculation parameters" box:

• Inclination angle of the pile (from the vertical): 30°

Caution: this means defining a pile longer than before as its base is located by convention level with the base of the last soil layer which is unchanged at elevation -12. The new length of the pile is therefore equal to $12/\cos(30^\circ) = 13.86$ m.

Also, the force applied to the head is a side force, expressed by convention in the local coordinate system of the pile and is therefore perpendicular to the pile: therefore, the force T = 700 kN is now also inclined by 30° .

Save your project under a different name: "Example 01c" for example.

Start the calculation by clicking Start calculation button.

Then click 💿 See results button.

G.4.1.5.2. Results

All the results are expressed in the local coordinate system of the pile: in particular, the lateral displacement is an upward displacement inclined 30° from the horizontal.

The formatted results are shown below.

They are also expressed in the local coordinate system. Note that the "palier" (plateau) column gives the mobilisation state of the lateral reaction of the soil in each element. It varies between 1 and 3 according to the total number of plateaux comprising the mobilisation curve. In particular, the value 1 always corresponds to a pure elastic state whereas a value higher than or equal to 2 corresponds to a partial or total plastification state.

Γ										
	D	éplacement:	s et solli	citations en t	out point du	pieu				
	-									
	Notations									
	Z : CO	te (longue	ur)							
	X : ab:	scisse - ri	epere loca	i du pieu (ion	gueurj					
	у:тн	ecne absoli	ue laterali	e au pieu (ion	gueurj					
	w : ro	faction (=o	//dxj							
	9 . ue	mont flóch	icront (fo	projecee (rong	acui j					
	T : of	fort trancl	nant (force	a))					
	r • rá	action late	iane (rorei áral du so	c) 1 (force / uni:	té de surface	a)				
		accion naci		r (roree y ann	ce de surrace	-)				
	Elément	Z	×	У	g	W	т	м	r	palier
	001	0.000	0.000	0.561E-01	0.000E+00	0.000E+00	0.700E+03	-0.107E+04	0.300E+03	2
	001	-0.133	0.154	0.559E-01	0.000E+00	-0.245E-02	0.672E+03	-0.961E+03	0.300E+03	2
	001	-0.267	0.308	0.554E-01	0.000E+00	-0.466E-02	0.645E+03	-0.859E+03	0.300E+03	2
	002	-0.267	0.308	0.554E-01	0.000E+00	-0.466E-02	0.645E+03	-0.859E+03	0.300E+03	2
	002	-0.400	0.462	0.545E-01	0.000E+00	-0.662E-02	0.617E+03	-0.762E+03	0.300E+03	2
	002	-0.533	0.616	0.533E-01	0.000E+00	-0.835E-02	0.589E+03	-0.669E+03	0.300E+03	2
	003	-0.533	0.616	0.533E-01	0.000E+00	-0.835E-02	0.589E+03	-0.669E+03	0.300E+03	2
	003	-0.667	0.770	U.519E-01	0.000E+00	-U.986E-02	0.561E+03	-0.581E+03	U.300E+03	2
	003	-0.800	0.924	0.503E-01	0.000E+00	-0.112E-01	0.534E+03	-0.49/E+03	0.300E+03	2
	004	-0.800	0.924	0.503E-01	0.000E+00	-0.112E-01	0.534E+03	-0.497E+03	0.300E+03	2
	004	-0.933	1 222	0.4655-01	0.000E+00	-0.123E-01	0.4785+03	-0.941/E+03	0.2005402	5
	004	-1.067	1 222	0.465E-01	0.000E+00	-0.132E-01	0.4795+02	-0.3416+03	0.3002403	2
	005	-1.200	1 296	0.444E=01	0.000E+00	-0.1395-01	0.451E+03	=0.269E±02	0.300E+03	5
	005	-1.333	1.540	0.423E-01	0.000E+00	-0.145E-01	0.423E+03	-0.202E+03	0.300E+03	5
	006	-1 333	1 540	0.423E-01	0.000E+00	-0.145E-01	0.423E+03	-0.202E+03	0.300E+03	2
:	006	-1.467	1.694	0.400E-01	0.000E+00	-0.149E-01	0.395E+03	-0.139E+03	0.300E+03	2
•	006	-1.600	1.848	0.377E-01	0.000E+00	-0.152E-01	0.367E+03	-0.804E+02	0.300E+03	2
	007	-1.600	1.848	0.377E-01	0.000E+00	-0.152E-01	0.367E+03	-0.804E+02	0.300E+03	2
	007	-1.733	2.001	0.353E-01	0.000E+00	-0.153E-01	0.340E+03	-0.259E+02	0.300E+03	2
	007	-1.867	2.155	0.330E-01	0.000E+00	-0.153E-01	0.312E+03	0.242E+02	0.300E+03	2
	008	-1.867	2.155	0.330E-01	0.000E+00	-0.153E-01	0.312E+03	0.242E+02	0.300E+03	2
	008	-2.000	2.309	0.306E-01	0.000E+00	-0.152E-01	0.284E+03	0.702E+02	0.300E+03	2
	008	-2.133	2.463	0.283E-01	0.000E+00	-0.150E-01	0.257E+03	0.112E+03	0.300E+03	2
	009	-2.133	2.463	0.283E-01	0.000E+00	-0.150E-01	0.257E+03	0.112E+03	0.300E+03	2
	009	-2.267	2.617	0.260E-01	0.000E+00	-0.146E-01	0.229E+03	0.149E+03	0.300E+03	2
	009	-2.400	2.771	0.238E-01	0.000E+00	-0.142E-01	0.201E+03	0.182E+03	0.300E+03	2
	010	-2.400	2.771	0.238E-01	0.000E+00	-0.142E-01	0.201E+03	0.182E+03	0.300E+03	2
	010	-2.533	2.925	0.216E-01	0.000E+00	-0.138E-01	0.173E+03	0.211E+03	0.300E+03	2
	010	-2.667	3.079	0.196E-01	0.000E+00	-0.132E-01	0.146E+03	0.236E+03	0.300E+03	2
	011	-2.667	3.079	0.196E-01	0.000E+00	-0.132E-01	0.146E+03	0.236E+03	0.300E+03	2
	011	-2.800	3.233	0.176E-01	0.000E+00	-0.126E-01	0.118E+03	0.256E+03	0.300E+03	2
	011	-2.933	3.387	0.157E-01	0.000E+00	-0.120E-01	0.903E+02	0.272E+03	0.300E+03	2
	012	-2.933	3.387	0.157E-01	0.000E+00	-0.120E-01	0.903E+02	0.272E+03	0.300E+03	2
	012	-3.067	3.541	0.139E-01	0.000E+00	-0.113E-01	0.626E+02	0.284E+03	0.300E+03	2
	012	-3.200	3.695	0.122E-01	0.000E+00	-0.106E-01	0.349E+02	0.291E+03	0.300E+03	2
	013	-3.200	3.695	0.122E-01	0.000E+00	-0.106E-01	0.349E+02	0.291E+03	0.281E+03	1
	013	-3.333	3.849	0.106E-01	0.000E+00	-0.991E-02	0.106E+02	0.295E+03	0.245E+03	1
	013	-3.46/	4.003	0.914E-02	0.000E+00	-0.919E-02	-0.104E+02	0.295E+03	0.211E+03	1
	014	-3.46/	4.003	0.914E-02	0.000E+00	-0.919E-02	-0.104E+02	0.295E+03	0.211E+03	1
	014	-3.600	4.157	0.778E-02	0.000E+00	-0.849E-02	-0.284E+02	0.292E+03	0.1/9E+03	1
	014	-3./33	4.311	0.6536-02	0.000E+00	-0.778E-02	-0.436E+02	0.286E+03	0.1516+03	1
	015	-3./33	4.311	0.653E-02	0.000E+00	-0.778E-02	-0.436E+02	0.286E+03	0.151E+03	1
	015	-4.000	4.405	0.5386-02	0.000E+00	-0.710E-02	-0.565ET02	0.2/05+03	0.1246703	1
	015	-4.000	4.619	0.434E-02	0.000E+00	-0.644E-02	-0.666E+02	0.2696+02	0.1002+03	1
	016	-4.000	4.615	0.4546-02	0.000E+00	-0.6446-02	-0.000ETU2	0.2696403	0.1002103	1
	016	-4.267	4.927	0.255E-02	0.000E+00	-0.519E-02	-0.812E+02	0.246E+02	0.589E+02	1
	017	-4.267	4.927	0.255E-02	0.000E+00	-0.519E-02	-0.812E+02	0.246E+03	0.589E+02	î
	017	-4.400	5.081	0.180E-02	0.000E+00	-0.462E-02	-0.858E+02	0.233E+03	0.415E+02	1
	017	-4.533	5.235	0.113E-02	0.000E+00	-0.406E-02	-0.889E+02	0.220E+03	0.261E+02	ī
	018	-4.533	5.235	0.113E-02	0.000E+00	-0.406E-02	-0.889E+02	0.220E+03	0.261E+02	1
	018	-4.667	5.389	0.546E-03	0.000E+00	-0.355E-02	-0.907E+02	0.206E+03	0.126E+02	1
	018	-4.800	5.543	0.370E-04	0.000E+00	-0.306E-02	-0.913E+02	0.192E+03	0.854E+00	1
	010	1 000				0.0000.00			0.0545.00	

G.4.2. Example 2: Pile submitted to a lateral displacement g(z) of soil

This second example allows us to consider the case of a pile with elastoplastic behaviour of the soil, submitted not to loads at head, but to a lateral earth pressure represented by a "free displacement" called g(z).

The example will be first run for 18 m long and 1 m diameter vertical piles with imposed null displacement at head. A variant will also be proposed with more flexible piles (35 cm in diameter).

A last part of the example illustrates the manual input of a 3-plateau behaviour law rather than the use of pressuremeter parameters.

G.4.2.1. Step 1: Elastoplastic behaviour and g(z) curve

We will first define 1 m diameter and 18 m long piles with an elastoplastic behaviour of the soil (defined from pressuremeter test results).

G.4.2.2. Data input

- Choose to create a new project by selecting
 New project radio-button.
- Click OK button.

If Foxta is already open, click "File", "New project" menu.

G.4.2.2.1. New project wizard

File box

- Complete file path by clicking _____ button.
- Give a name to the file and save it.

"Project" box

- Give the project a title.
- Enter a project number.
- Add a comment if required.
- Leave "Use the soil database" box unticked (we will not use the database for this example) and click Next button.

Two project wizard		×
		New project
File path (*) : ocuments	\Logiciels Terraso/\Foxtav3\picoef\MTO\Exemple	e 02a.fxp
Project		
Project title (*) :	Exemple 2a	
Project number (*) :	Exemple 2a	
Comments :		
(*) These fields are requ	ired Use the soil database Bac	Next

G.4.2.2.2. New project wizard: Modules to use

In "Modules to use" window, select Piecoef+ module then click Create button.

The Piecoef+ data input window is displayed.

Complete the data tabs on right-hand zone of screen.

G.4.2.2.3. "Parameters" tab

Pile 1/1 : Exemple 02a		🗣 ቅ 🖀
Parameters Soil/pile SExternal	oads on pile 🛛 🕈 Free g(z) soil displacement	
- Calculation type		General settings
Pile calculation under transv	erse loads	~
based on pressure	emeter data input (elasto-plastic)	~
if loads	due to transverse earth pressure are dominant	~
Colouisiina parametera		
	Europeale 02a	
Calculation title	Exemple vza	
Reference elevation (m)		0,00 🗢
Inclination angle of the pile (*)		0,00 🗘
Pile family	No family	Load incrementation
	Calculation	

This tab includes two boxes:

"Calculation type" box: select

- drop-down list 1: Pile calculation under transverse loads
- drop-down list 2: Based on pressuremeter data input (elasto-plastic)
- drop-down list 3: If loads due to transverse earth pressure are dominant

"Calculation parameters" box:

- Calculation title: Example 02a
- Reference elevation: 0,0 m
- Inclination angle of the pile: 0° (vertical pile)
- Pile family: no family
- Load incrementation: here, we will keep the default values.

To go to the next tab, click either name of "Soil/Pile" tab or button.

G.4.2.2.4. "Soil/Pile" tab

4-			\$	🔫 Pile 1/1	: Exemple 02a 🍃						l)
				🔮 Paramete	ers 🛛 🔊 Soil/pile	🕈 External I	oads on pile 🛛 💐 F	ree g(z) soil di	splacement			
2-											So	il/nile
(m)				Soil layers	definition							iii piic
o		Reference elevation : 0.0 m		N°	Name	Colour	Z _{base}	EM	α	В	P _f *	Pl*
				1	Base layer		-2,00	2,00E04	0,33	1,00	700,00	1000,00
~-~·		-2.0 m		3	Dense sand		-18,00	3,00E04	0,33	1,00	2500,00	3500,00
	1											
-4												
φ.												
å-												
10					avers number : 3		F	Database			L 🚄 🛸	<u>/* (~</u>
<u>.</u>		12.0 m	:									
2		-12.0 11	•	Pile discret	isation							
÷				Consid	Name	irce	h		FI		0	
4				Base layer	Hanto			2,00	<u>.</u>	4,91E05	10	
÷-				Soft Clay				10,00		4,91E05	30	
				Dense sand	3			0,00		4,91605	20	
<u>.</u>		-18.0 m										
-20												
-22												
Elemente		Ontions										
Symb	Nomination	Visible										/4
					Ivisions number : 6	50						*
	Soil					_	Calculation			_		
l	Pile	Cross-section				\checkmark	Start calcu	lation 😔 S	ee results			

This tab is used to define the soil characteristics and the pile discretisation.

"Soil layers definition" box:

Create three soil levels by clicking 🗣 button to add each layer. The data to be input is as follows:

Name	Z _{base} (m)	E _M (kPa)	α	B (m)	Pf* (kPa)	PI* (kPa)
Subgrade	-2,0	20000	0,33	1,0	700	1000
Soft clay	-12,0	2000	0,50	1,0	100	200
Dense sand	-18,0	30000	0,33	1,0	2500	3500

Note: We will not use the database for this example.

"Pile discretisation" box:

The data to be input is as follows:

• Leave "Consideration of shear force" box unticked

Layer	h (m)	EI (kN.m ²)	n
Subgrade	2,0	491000	10
Soft clay	10,0	491000	30
Dense sand	6,0	491000	20

The EI product defined here corresponds to a concrete pile, with a solid circular section of 1 m in diameter. The concrete modulus is taken as equal to 10,000 MPa.

The discretisation has been defined with respect to the thickness of each layer but without attempting to find the same calculation step in each layer as this is not mandatory and does not affect the results provided the mesh is sufficiently refined.

 Parameters 	Soil/pile	External loads on pile	Free g(z) soil	displacement				
			2,17		Exter	nal loa	ads on	pile
Point loads norr	mal to the pile -				2/100	indi ioo		P
N°		Z	т	м	к		С	<u></u>
0		0,00	0,00		0,00	0,00E00	0,00E00	
1		-2,00	0,00		0,00	0,00E00	0,00E00	P
2		-12,00	0,00		0,00	0,00E00	0,00E00	
3		-18,00	0,00		0,00	0,00E00	0,00E00	
								2
Prescribed dis	Prescribed tra	inslation y (m)	0,00 🗘	Prescrib	ed rotation ω (rad)		0,00 🗘	
Multiple loads a	t the pile head							
Activate the	e multiple loadi	ng at pile head						
Distributed load	is normal to the	pile						
Activate dis	stributed loads							
								45) • []
			ulation Start calculation	🔾 🥹 See res				

G.4.2.2.5. "External loads on pile" tab

"Point loads normal to the pile" box:

There is no load to be defined for this example (the only load applied to the pile is curve g(z)).

"Prescribed displacements at pile head" box:

We will prescribe a null displacement at pile head.

The data to be input is therefore as follows:

	Tick box	Values
y (m)	Yes	0,00
ω (rad)	No	-

"Multiple loads at the pile head" box:

• Leave "Activate the multiple loading at pile head" box unticked.

"Distributed loads normal to the pile" box:

• Leave "Activate distributed loads" box unticked.

G.4.2.2.6. "Free g(z) soil displacement" tab

"g(z) definition" box:

- Click "Define a g(z) displacement" box.
- Open g(z) wizard by clicking the button to calculate the displacement values. The data to be input is described below.

Note: The free g(z) displacement can be input directly by any (z, g(z)) pairs. In particular, the "z" values need not be compatible with the pile mesh. Indeed, the calculation engine systematically applies a re-interpolation of these values to express the g(z) values at the calculation points.

"Definition of compressible horizon" box:

- Horizon roof elevation Z1 (m): here, this is the roof of the soft clay layer (elevation -2,0 m).
- Base elevation of the horizon Z2 (m): here, this is the base of the soft clay layer (elevation -12,0 m). The prescribed g(z) curve therefore concerns only the thickness of the soft clay layer.

"Dimensionless definition" box:

- Polynomial coefficients A1, A2, A3 and A4 (values proposed by default as a function of curve type (I or II).
- EC7 curve:
 - ✓ I: General case
 - ✓ II: Case of a layer less deformable on surface of a substantial height (≥ 0.3 x D) which is the case here.

Amplitude box:

• $G_{max}(m) = maximum$ horizontal displacement of soil, taken equal to 5 cm.

The data to be input is as follows:

Z1 (m)	Z2 (m)	Curve	A1	A2	A3	A4	G _{max} (m)
-2,0	-12,0	П	0,50	1,50	0,00	-2,00	0,05

g(z) wizard using the Eurocode 7	x
Definition of compressible horizon	
Horizon roof elevation Z1 (m) -2,0	
Base elevation of the horizon Z12,0	
Dimensionless definition	_
A1 0,50 C	1
A2 1,50 C	
A3 0,00 C	
A4 -2,00 🗘	
Amplitude	_
G _{max} (m) 0,5000	
$g(z)=G_{max}^{*}(A1+A2*Z+A3*Z^{2}+A4*Z^{3})$ with $Z=(Z1-z)/(Z1-z)$	-Z2)
Ok Cancel	

Click \bigcirc button to import g(z) curve thus generated into current project.

This g(z) curve is represented (in green) on the project cross-section.

G.4.2.3. Calculation and Results

G.4.2.3.1. Calculation

Click Start calculation button.

To see the results in table and graph form, click veresults button.

G.4.2.3.2. Results

Main curves:

Deflection: displaceme	lateral nt (cm)	Bending r M (kN	noment I.m)	Shear f T (k	orce N)	Lateral soil p (kF	reaction Pa)
Min	Max	Min	Max	Min	Max	Min	Max
-0,1	2,7	-964	776	-448	467	-114	737

The introduction of a free g(z) soil displacement is represented in the calculation by a lateral reaction not proportional to the pile displacement y(z) but to the relative displacement of the pile with respect to the soil y(z) - g(z), which explains why a negative reaction is obtained on the height of the clay layer as the obtained displacement of the pile is lower than the free soil displacement.

Click Groupie parameters button to obtain the stiffness coefficients (as in example 1, these are given here for information purposes but will not be used for example 2):

🛗 Groupie pa	arameters			×
$\begin{bmatrix} T \\ M \end{bmatrix}$	$\Big)_{head} = \begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix}$		$\binom{2}{2}_{head} + \binom{2}{N}$	
ρ ₁	ρ ₂	ρ3	то	Mo
1,3381E05	-1,2739E05	2,8643E05	-330,49	1409,21
	Expo	ort O	k	

The obtaining of a non null term at origin (T0, M0) is synonymous with a nonlinearity of the apparent behaviour at pile head. This can be explained both by a partial plastification of the soil or by the application of a load on the pile other than the one at the head.

Click <u>Back to the data</u> button to return to presentation of various types of results, then click "Formatted results".

These results notably include the detail of the g(z) curve.

oeud	cote	abscisse	g(z)	g(z)-projetée
011	-2.000	2.000	0.0250	0.0250
012	-2.333	2.333	0.0275	0.0275
012	-2.333	2.333	0.0275	0.0275
013	-2.667	2.667	0.0300	0.0300
013	-2.667	2.667	0.0300	0.0300
014	-3.000	3,000	0.0324	0.0324
014	-3.000	3.000	0.0324	0.0324
015	-2 222	2 222	0.0348	0 0348
015	-2 222	2 222	0.0348	0.0348
015	-3.333	3.333	0.0340	0.0348
016	-3.667	5.00/	0.0370	0.0370
016	-3.66/	3.66/	0.0370	0.0370
017	-4.000	4.000	0.0392	0.0392
017	-4.000	4.000	0.0392	0.0392
018	-4.333	4.333	0.0412	0.0412
018	-4.333	4.333	0.0412	0.0412
019	-4.667	4.667	0.0431	0.0431
019	-4.667	4.667	0.0431	0.0431
020	-5.000	5.000	0.0448	0.0448
020	-5.000	5.000	0.0448	0.0448
021	-5 333	5 333	0.0463	0.0463
021	-5 222	5 222	0.0462	0.0463
022	-5.555	5.555	0.0405	0.0405
022	-5.66/	5.667	0.0476	0.0476
022	-5.667	5.667	0.0476	0.0476
023	-6.000	6.000	0.0486	0.0486
023	-6.000	6.000	0.0486	0.0486
024	-6.333	6.333	0.0494	0.0494
024	-6.333	6.333	0.0494	0.0494
025	-6.667	6.667	0.0498	0.0498
025	-6.667	6.667	0.0498	0.0498
026	-7.000	7.000	0.0500	0.0500
026	-7.000	7.000	0.0500	0.0500
027	-7.333	7.333	0.0498	0.0498
027	-7 222	7 222	0.0498	0.0498
028	-7 667	7 667	0.0492	0.0493
020	-7.667	7.007	0.0495	0.0495
028	-7.667	7.667	0.0493	0.0493
029	-8.000	8.000	0.0484	0.0484
029	-8.000	8.000	0.0484	0.0484
030	-8.333	8.333	0.0471	0.0471
030	-8.333	8.333	0.0471	0.0471
031	-8.667	8.667	0.0454	0.0454
031	-8.667	8.667	0.0454	0.0454
032	-9.000	9.000	0.0432	0.0432
032	-9.000	9.000	0.0432	0.0432
033	-9.333	9.333	0.0406	0.0406
033	-9.333	9,333	0.0406	0.0406
024	-9.667	9.667	0.0274	0.0274
034	- 5.007	0.007	0.0374	0.0374
034	-9.66/	5.667	0.0574	0.03/4
035	-10.000	10.000	0.0338	0.0338
035	-10.000	10.000	0.0338	0.0338
036	-10.333	10.333	0.0296	0.0296
036	-10.333	10.333	0.0296	0.0296
037	-10.667	10.667	0.0249	0.0249
037	-10.667	10.667	0.0249	0.0249
038	-11.000	11.000	0.0196	0.0196
038	-11.000	11.000	0.0196	0.0196
039	-11,333	11,333	0.0137	0.0137
039	-11 333	11 333	0.0137	0.0137
040	-11.555	11.555	0.0157	0.015/
040	-11.66/	11.66/	0.0072	0.0072
040	-11.667	11.667	0.0072	0.0072
)41	-12,000	12,000	0 0000	0.0000

G.4.2.4. Calculation variant with a more flexible pile

Click A Back to the data button to modify the data.

G.4.2.4.1. Modification of pile characteristics

In the "Soil/Pile" tab, modify the diameter of the pile and its EI product:

"Soil layers definition" box:

• Drilling diameter B: 0.35 m for the three soil layers.

"Pile discretisation" box:

Pile product of inertia EI = 7366 kN.m² over complete height (always calculated for a 10,000 MPa modulus).

Save the project with a different name: "Example 02ab" for example.

Start the calculation by clicking Start calculation button.

G.4.2.4.2. Results

Comparison of results:

	Deflection: lateral displacement (cm)		Ben mon M (k	ding nent N.m)	Shear force T (kN)		Lateral soil reaction p (kPa)	
	Min	Max	Min	Max	Min	Max	Min	Max
B = 1,0 m	-0,1	2,7	-964	776	-448	467	-114	737
B = 0,35 m	-0,1	5,1	-33	75	-93	56	-165	945

Note that the 0,35 m diameter pile is more flexible and therefore more closely follows the free soil displacement: the maximum pile displacement of 5.06 cm is very close to that of the free g(z) soil displacement. This is also represented by a low reaction mobilised in the clay layer.

Also, the pile "takes" lower loads and the moments and shear forces are therefore much lower in the pile.

Click (de Back to the index) button then (

Back to the data

button to go back to the data.

G.4.2.5. Step 2: Manual input of mobilisation law

We will now take the previous example (variant with B = 0.35 m), but opting for manual input of the 3-plateau mobilisation law (rather than for an elastoplastic behaviour based on the results of the pressuremeter test).

Let us start by displaying the formatted results of the previous step (calculation for flexible pile, where B = 0.35 m).

			E.M	aipiia	в	рт	pi		
02 03	-2.00 -12.00 -18.00	0.737E+04 0.737E+04 0.737E+04	20000.00 2000.00 30000.00	0.33 0.50 0.33	0.350 0.350 0.350	700.00 100.00 2500.00	1000.00 200.00 3500.00		
Discrét	isation du	pieu (Paramètr	res du calcul)						
Elém	ent	×L	EI	ks1*B	p1*B	ks2*B		p2*B	>
00	1	0.200	0.7366E+04	0.5532E+05	0.2450E+03	0.2766E	+05	0.3500E+03	
00	2	0.200	0.7366E+04	0.5532E+05	0.2450E+03	0.2766E	+05	J.3500E+03	
00	4	0.200	0.7366E+04	0.5532E+05	0.2450E+03	0.2766F	+05	3500E+03	
00	5	0.200	0.7366E+04	0.5532E+05	0.2450E+03	0.2766E	+05	0.3500E+03	
00	5	0.200	0.7366E+04	0.5532E+05	0.2450E+03	0.2766E	+05	0.3500E+03	
00	7	0.200	0.7366E+04	0.5532E+05	0.2450E+03	0.2766E	+05	0.3500E+03	
00	3	0.200	0.7366E+04	0.5532E+05	0.2450E+03	0.2766E	+05	0.3500E+03	
00	3	0.200	0.7366E+04	0.5532E+05	0.2450E+03	0.2766E	+05	3.3500E+03	
01	1	0.200	0.7366E+04	0.5532E+05	0.2450E+03	0.2766E	+05	0.3500E+03	
01	>	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.224/E	+04	1.7000E+02	
01	3	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E	+04	0.7000E+02	
01	4	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E	+04	0.7000E+02	
01	5	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E	+04	0.7000E+02	
01	5	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E	+04	0.7000E+02	
01	2	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E	+04	J.7000E+02	
01	5	0.333	0.73665104	0.44946+04	0.3500E+02	0.224/E	+04	0.7000E+02	
02	ń	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E	+04	.7000E+02	
02	1	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E	+04	0.7000E+02	
02	2	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E	+04	0.7000E+02	
02	3	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E	+04 1	0.7000E+02	
02	4	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E	+04	0.7000E+02	
02	5	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E	+04	0.7000E+02	
02	o 7	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.224/E	+04	J./UUUE+U2	
02	2	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E	+04	1.7000E+02	
02		0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E	+04	0.7000E+02	
03	0	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E	+04	0.7000E+02	
03	1	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E	+04 1	0.7000E+02	
03	2	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E	+04	0.7000E+02	
03	5	0.333	0.7366E+04	U.4494E+04	0.3500E+02	0.2247E	+04	J./U00E+02	
03		0.333	0.7366E+04	0.44946+04	0.3500E+02	0.2247E	+04	7000E+02	
03	5	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E	+04	0.7000E+02	
03	7	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E	+04	0.7000E+02	
03	з	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E	+04	0.7000E+02	
03	9	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E	+04 0	0.7000E+02	
04)	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E	+04	0.7000E+02	
04	1	0.300	0.7366E+04	0.8298E+05	0.8750E+03	0.4149E	+05	J.1225E+04	
04	2	0.300	0.7366E+04	0.82985+05	0.8750E+03	0.4149E	+05	J.1225E+04	
04	4	0.300	0.7366E+04	0.8298E+05	0.8750E+03	0.4149E	+05	1.1225E+04	
04	-	0.300	0.7366E+04	0.8298E+05	0.8750E+03	0.4149E	+05	0.1225E+04	
04	5	0.300	0.7366E+04	0.8298E+05	0.8750E+03	0.4149E	+05	0.1225E+04	
04	7	0.300	0.7366E+04	0.8298E+05	0.8750E+03	0.4149E	+05	0.1225E+04	
04	3	0.300	0.7366E+04	0.8298E+05	0.8750E+03	0.4149E	+05	0.1225E+04	
04	9	0.300	0.7366E+04	0.8298E+05	0.8750E+03	0.4149E	+05	0.1225E+04	
05	J	0.300	0.7366E+04	0.8298E+05	0.8/50E+03	0.4149E	+05	J.1225E+U4	
05	>	0.300	0.7366E+04	0.8298E+05	0.8750E+03	0.4149E	+05	1.1225E+04	
115		0.300	0.7366E+04	0.8298E+05	0.8750E+03	0.4149E	+05	0.1225E+04	
05				0.00005.05	0.07505.00	0 41405	+05	12255+04	
05	4	0.300	U./366E+U4	0.82986+05	0.8/50E+03	0.41456			
05 05 05	4	0.300	0.7366E+04 0.7366E+04	0.8298E+05	0.8750E+03	0.4149E	+05	0.1225E+04	
05 05 05 05	4 5 5	0.300 0.300 0.300	0.7366E+04 0.7366E+04 0.7366E+04	0.8298E+05 0.8298E+05 0.8298E+05	0.8750E+03 0.8750E+03 0.8750E+03	0.4149E 0.4149E 0.4149E	+05	0.1225E+04 0.1225E+04	
05 05 05 05 05	4 5 6 7	0.300 0.300 0.300 0.300	0.7366E+04 0.7366E+04 0.7366E+04 0.7366E+04	0.8298E+05 0.8298E+05 0.8298E+05 0.8298E+05	0.8750E+03 0.8750E+03 0.8750E+03 0.8750E+03	0.4149E 0.4149E 0.4149E 0.4149E	+05 +05	0.1225E+04 0.1225E+04 0.1225E+04	

This screen shows the values of the parameters defining the mobilisation law constituted by the calculation engine based on the pressuremeter data. This is a three-plateau law (see figure below) characterised by:

- Soil reaction coefficient at 1st plateau k_s1 (kPa/m)
- Creep pressure (net) of soil P1 at 1st plateau (kPa)
- Soil reaction coefficient at 2nd plateau k_s2 (kPa/m)
- Limit pressure (net) of soil P2 at 2nd plateau (kPa)

In the formatted results, each of these values is given multiplied by the pile diameter B (0,35 m in this case).

We will now reintroduce these parameters into Piecoef+ in mobilisation law manual input mode to illustrate this functionality.

G.4.2.5.1. "Parameters" tab

Return to data definition and to "Parameters" tab.

Calculation type box:

- drop-down list 1: conserve "Pile calculation under transverse loads"
- drop-down list 2: select "by manual input (3 plateaux)"

"Calculation parameters" box:

- Modify the title of the calculation.
- Leave the other parameters unchanged.

G.4.2.5.2. "Soil/Pile" tab

The data to be input is that described previously: P1 (kPa), P2 (kPa), k_s1 (kPa/m) and k_s2 (kPa/m).

The values to be input have been calculated from the formatted results given on screen copy (by dividing each of the terms presented by B):

	k₅1 (kPa/m)	P1 (kPa)	k₅2 (kPa/m)	P2 (kPa)
Subgrade	158057	700	79028,5	1000
Soft clay	12840	100	6420,0	200
Dense sand	237086	2500	118543	3500

Parameters	Soil/pile	External loads	on pile 🛛 💐 Free g(z) soil	displacement				
							So	il/pil
oil layers defi	nition							
N°	Name	Colour	Zbase	k _{s1}	P1	k _{s2}	P2	В
1	Base layer		-2,00	1,58E05	700,00	7,90E04	1000,00	0,3
2	Soft clay		-12,00	1,28E04	100,00	6,42E03	200,00	0,
3	Dense sand		-18,00	2,37E05	2500,00	1,19E05	3500,00	0,
			_					
Laye e discretisati Considerat	rs number : 3 on ion of shear fo	orce		Database				4
e discretisati Considerat	rs number : 3 on ion of shear fo Name	prce	h	Database	EI		· ·	(
e discretisati Considerat se layer	rs number : 3 on ion of shear fo Name	orce	h	Database	El	7,37E03	n 10	(
Laye e discretisati Considerat se layer ft clay nse sand	rs number : 3 on	orce	h 1	2,00 0,00 6,00	El	7,37E03 7,37E03 7,37E03	n 10 30 20	(
Laye discretisati Considerat se layer ft clay nse sand	rs number : 3 on ion of shear fr Name	arce	h 1	2,00 0,00 6,00	EI	7,37E03 7,37E03 7,37E03	n 10 30 20	

Start the calculation by clicking V Start calculation button.

G.4.2.5.3. Results

To within one or 2 roundings-off (small differences due to the rounding off of ks1 and ks2 values), the results are the same as those of the previous calculation as can be expected.

This functionality can be used in the situation where the soil reaction mobilisation law is defined using data other than pressuremeter data.

Moreover, let us point out that the law constituted by default by the calculation engine is valid for a slightly slender single pile of circular or rectangular envelope section. Considering a group effect or a slender rectangular section (rectangular pile) can affect the calculation of the various plateaux and require either a correction of the pressuremeter parameters to be input into the model or a direct manual definition (refer to User's manual).

G.4.3. Example 3: Calculation of a metallic shaft under multiple loads at head

This example considers the case of a metallic shaft of hollow circular section (2 m in diameter and 5 cm thick) submitted to a transverse trapezoidal distributed load at its upper part and to different head load cases.

This metallic shaft is 10 m deep and passes through 2 soil layers: alluvium at head then a substratum.

We neglect the lateral reaction of the soil on the alluvium layer thickness (3 m at head).

The example is done first without considering the shear force displacements then, in a second step, considering the shear force displacements.

G.4.3.1. Data input

- Choose to create a new project by selecting New project radio-button.
- Click OK button.

If Foxta is already open, click "File", "New project" menu.

G.4.3.1.1. New project wizard

"File" box

- Complete file path by clicking _____ button.
- Give a name to the file and save it.

"Project" box

- Give the project a title.
- Enter a project number.
- Add a comment if required.
- Leave "Use the soil database" box unticked (we will not use the database for this example) and click Next button.

📅 New project wizard		×
	Ne	ew project
File File path (*) : cuments	Logiciels Terraso/Foxtav3\picoef\MTO\Exemple 03 a	a.fxp
Project		
Project title (*) :	Example 3a	
Project number (*) :	Example 3a	
Comments :		
(*) These fields are requ	ired Use the soil database Back	Next

G.4.3.1.2. New project wizard: Modules to use

In "Modules to use" window, select Piecoef+ module then click Creat	button.
---	---------

Mew project wizard		Modu	les to use
Modules			
	17	<u>**</u>	¢ \$
TASPIE+	PIECOEF+		TASNEG
×××	I,	4	
	FONDSUP	FONDPROF	GROUPIE+
1 selected module(s)	Use the soil database	Back	Create

The Piecoef+ data input window is displayed.

Complete the various data tabs on the right-hand zone of the screen.

G.4.3.2. "Parameters" tab

Pile 1/1 : Example 3a	rnal loads on pile 🗍 👽 Free q(z) soil displacement	e e e
Calculation type	Gen	eral settings
Pile calculation under tra	ansverse loads	~
based on pre-	ssuremeter data input (elasto-plastic)	~
	hort term loads applied at pile head are dominant	~
Calculation parameters		
Calculation title	Example 3a	
Reference elevation (m)		2,00 🗘
Inclination angle of the pile (°)		0,00 🗘
Pile family	No family	~
		Load incrementation
	Calculation Start calculation	

"Calculation type" box: select

- drop-down list1: Pile calculation under transverse loads
- drop-down list2: Based on pressuremeter data input (elasto-plastic)
- drop-down list3: If short term loads applied at pile head are dominant (the load cases studied correspond here to variable loads and not to permanent loads)

"Calculation parameters" box:

- Calculation title: Exemple 3a
- Reference elevation: 2,0 m
- Inclination angle of the pile: 0° (vertical pile)
- Pile family: no family
- Load incrementation: here, we will conserve the default values.

To go to the next tab, click either name of "Soil/Pile" tab or 🕨 button.

G.4.3.3. "Soil/Pile" tab

S Pile 1/1 : Example 3a 🕨 . Parameters Sol/pile Sternal loads on pile S Free g(z) soil displacement Soil/pile EM 1,00E-2.00E Z (m) -1.0 m Layers number : 2 Database 🖕 🖆 🐂 🔩 🗺 : deration of shear forc Con: -8.0 m 20 3,00 3,06E07 3.06E07 Elen • • • • Q **4** Divisions number : 80 Ц ☑ Calculation See results -Charges ponctue

This tab is used to define soil layer characteristics and pile discretisation.

"Soil layers definition" box:

The data to be input is:

Name	Z _{base} (m)	E _M (kPa)	α	B (m)	Pf* (kPa)	PI* (kPa)
Alluvium	-1,0	0,1	0,33	2,00	0,10	0,10
Substratum	-8,0	200000	0,25	2,00	4000	6000

Note that the characteristics have been voluntarily reduced in the alluvium thickness (first 3 metres from surface): this corresponds to the neglected lateral reaction assumption in this 3 m thickness.

Note: It is preferable to input very low values rather than null values.

"Pile discretisation" box:

The data to be input is as follows:

• Keep "Consideration of shear force" box unticked.

Name	h (m)	EI (kN.m ²)	n
Alluvium	3,0	3,06E7	20
Substratum	7,0	3,06E7	60

El product is calculated here as follows for a 2 m hollow circular metallic section with a thickness of 5 cm:

$$EI = E_{steel} \left[\frac{\pi D_{ext}^{4}}{64} - \frac{\pi D_{int}^{4}}{64} \right] = 3.06 \times 10^{7} \text{ kN.m}^{2}$$

G.4.3.4. "External loads on pile" tab

For our example, we will define a distributed load normal to the pile between elevations 2 and -1, and several different load cases at pile head ("multiple loads at the pile head").

"Point loads normal to the pile" box:

There is no data to be input in this box for this example.

"Multiple loads at the pile head" box:

 Tick "Activate the multiple loading at pile head" box and add a line for each load case with with button.

The data to be input is as follows:

N°	T (kN)	M (kN.m)
1	4000	5000
2	6000	0,00
3	8000	-15000
4	0	-15000

"Distributed loads normal to the pile" box:

The data to be input is:

- Top level of the load Z1 (m) (elevations proposed automatically at layer limits)
- Base level of the load Z2 (m) (elevations proposed automatically at layer limits)
- Load value at the head of the layer Load 1 (kPa)
- Load value at the base of the layer Load2 (kPa)

The data to be input is as follows:

N°	Z1 (m)	Z2 (m)	Load 1 (kPa)	Load 2 (kPa)
1	2,0	-1,0	0	1500
2	-1,0	-8,0	0	0

The defined distributed load corresponds to a trapezoidal load applied between elevations 2 and -1. This load is represented on the project cross-section.

G.4.3.5. "Free g(z) soil displacement" tab

No data to be input in this tab.

G.4.3.6. Calculation and Results

G.4.3.6.1. Calculation

Click Start calculation button.

To see the results in table and graph form, click veresults button.

G.4.3.6.2. Results

Main curves

Comments on results:

- For the 3 load cases, we find that the lateral reaction is null between a depth of 0 and 3 m.
- For each load case, we find the prescribed conditions (T, M) at pile head.
- The first 3 load cases (T value not null) lead to same type of pile behaviour: maximum displacement at pile head, oriented towards the right (in direction of prescribed force T), maximum moment at the antinode, null moment and shear force at pile base, saturation of lateral reaction (plastification) of the soil over a thickness from 1.0 to 1.5 m under the neglected lateral reaction area.
- The last load case (high negative moment at pile head with T=0) gives a different behaviour: maximum lateral displacement at pile head but oriented towards the left (due to negative moment at pile head), maximum moment at pile head (corresponding to the prescribed value of 15000 kN.m), no soil plastification (the pile moves in the other direction and much less than for the first 3 load cases).

G.4.3.7. Step 2: Considering shear force displacements

Here, we take the same example, but this time considering the shear force displacements.

The contribution of these displacements is generally negligible when the "length/diameter" ratio is higher than 10 or event 20 (thin beam assumption). For slightly slender piles such as shafts for example, this assumption is no longer valid and the general thick beam model may need to be adopted which requires the definition, in addition to the product of inertia, of the shear stiffness GS' taken as equal to the product of the shear modulus G and the reduced section S' (refer to User's manual).

G.4.3.7.1. Data modification

To modify data, click 🛛 🕊 Back to the data 🔵 button and return to "Soil/Pile" tab:

"Pile discretisation" box:

- Tick "Consideration of shear force" box.
 The GS' column (Shear stiffness kN) is displayed.
- Input value 1,237^e7 kN in this column for the two layers.

This value is obtained by the product of shear modulus G of the pile and its reduced section S' (for a hollow circular section, the reduced section S' is taken as equal to half of the total pile section, k = 0.5).

$$G = \frac{E}{2(1+\upsilon)} = \frac{210.10^6}{2(1+0.3)} = 80\ 770\ \text{MPa}$$
$$S' = \frac{S}{2} = \frac{\pi}{8} \left(D_{ext}^2 - D_{int}^2 \right) = 0.1531\ \text{m}^2$$

	neters 🛛 🛛 Soil/pile	🗸 🖉 External loads o	on pile 🛛 💐 Free	g(z) soil displac	cement			
							So	il/pi
Soil laye	o Name	Colour	Z	E.,	a	В	D,*	p,*
1	Alluvium		-1.00	1.00E-01	0.33	2.00	0.10	.,
2	Substratum		-8,00	2,00E05	0,25	2,00	4000,00	6000
?	Layers number : 2	2	0	Database			Þ í ႃ	<u></u>
- Pile disc	cretisation	$\overline{}$						
Pile disc Cor Alluvium Substra	cretisation Isideration of shear Name	force	3,00 7,00	EI 3,06E 3,06E	07	35' 1,24E07 1,24E07	n 20 60	
Pile disc	retisation sideration of shear None	force h	3,00	EI 3,066 3,066	:07 (07	38' 1,24E07 1,24E07	n 20 60	
Pile disc Cor Aluvium Substra	retisation sideration of shear Name Lum Divisions number	force h	3.00 7.00	El 3,066 3,066		35' 1,24E07 1,24E07	n 20 60	

Save the project under a different name: "Example 03b" for example. Start the calculation by clicking **Start calculation** button.

Comparison of results:

	Deflection: lateral Bending moment M displacement (cm) (kN.m)		Shear f (k	force T N)		
	Min	Max	Min	Max	Min	Max
Load No. 1						
Without shear force displacements	-0,1	1,76	0,00	26015	-6885	8500
Load No. 1						
With shear force displacements	-0,1	2,12	0,00	26015	-6647	8500
Load No. 2						
Without shear force displacements	-0,1	2,13	0,00	29387	-8007	10500
Load No. 2				~~~~		
With shear force displacements	-0,2	2,61	0,00	29387	-7768	10500
Load No. 3						
Without shear force displacements	-0,1	1,69	-15000	23265	-6544	12500
Load No. 3						
With shear force displacements	-0,1	2,20	-15000	23265	-6365	12500
Load No. 4						
Without shear force displacements	-0,3	0,1	-15000	121	108	4500
Load No. 4						
With shear force displacements	-0,3	0,0	-15000	0	0	4500

Consideration of shear force displacements has only a small influence on the loads. However, the amplitude of the displacements is increased by around 25% which implies a reduction of apparent stiffness at pile head of 25%.

Moreover, note that by considering the shear force displacements, the distortion and the first derivative of the deflection are no longer equal.

G.4.4. Example 4: Buckling and 2nd order: study of buckling of a micro-pile

Here, we consider a micro-pile made in a 0.25 m diameter and 13 m long borehole assumed perfectly clamped at pile head.

This example illustrates 2 aspects (dealt with in 2 steps):

- A specific buckling calculation (evaluation of critical buckling load).
- A quantification calculation of the second-order effects under the effect of a transverse load.

G.4.4.1. Step 1: Buckling calculation

G.4.4.1.1. "Parameters" tab

Pile 1/1 : Example 4		🗣 🖶 📹
🛛 Parameters 🖉 Soil/pile 🖉 External load	ts on pile 🛛 🛛 Initial pile deflection	
- Calculation type		General settings
Specific buckling calculation		~
by manual input		~
Calculation parameters	Fxample 4	
Deference elevation (m)		0.00
Inclination angle of the pile (*)		0,00
Pile family	No family	0,00
		(Load incrementation)
	Calculation	

"Calculation type" box: select

- drop-down list1: Specific buckling calculation
- drop-down list2: By manual input

"Calculation parameters" box:

- Calculation title: Example 4a
- Reference elevation: 0,0 m
- Inclination angle of the pile: 0° (vertical pile)
- Pile family: no family
- Load incrementation: here, we will conserve the default values.

To go to the next tab, click either the name of "Soil/Pile" tab or button.

G.4.4.1.2. "Soil/Pile" tab

This tab is used to define the soil layers and the pile discretisation.

"Soil layers definition" box:

Create three soil layers by clicking 🗣 button to add each soil layer. The data to be input is as follows:

Name	Z _{base} (m)	k₅ (kPa/m)	B (m)
Layer 1	-4,0	20000	0,25
Layer 2	-10,0	2500	0,25
Layer 3	-13,0	100000	0,25

"Pile discretisation" box:

The "Consideration of shear force" box is not accessible in this type of calculation.

The data to be input is as follows:

Name	h (m)	EI (kN.m ²)	n
Layer 1	4,0	1500	30
Layer 2	6,0	1500	30
Layer 3	3,0	1500	30

	cample 4 🕨				• • 1
Parameters	Soil/pile	C External loads on pile	Initial pile deflection		
				Extern	al loads on pil
Point loads nor	rmal to the pile				
	N°		Z	К	с 🥀
	0		0,00	1,00E10	1,00E10
	1		-4,00	0,00E00	0,00E00
	2		-10,00	0,00E00	0,00E00
	3		-13,00	0,00E00	0,00E00
fultiple loads a	at the pile head	1			
Activate th	ne multiple load	ling at pile head			
Distributed load	ds normal to th	ie pile			
Activate di	istributed load	S			
					1.1
					61
					×
					×.
			Coloriation		<u>×</u>
			Calculation		

"Point loads normal to the pile" box:

Here we wish to define a clamping at pile head: we define therefore at pile head (elevation 0) very high values for K and C to prevent displacements and rotations (here, this is a support condition and not a load condition).

The values to be input are as follows:

N°	Z (m)	K (kN.m)	C (kN.m/rad)
0	0,00	1,0 ^e 10	1,0 ^e 10
1	-4,00	0,00	0,00
2	-10,00	0,00	0,00
3	-13,00	0,00	0,00

G.4.4.1.4. Free g(z) soil displacement tab

This tab is not accessible here.

G.4.4.1.5. Calculation and Results

Click Start calculation button.

To see the results in table and graph form, click veresults button.

Curves related to buckling

The only curve available in the results for this calculation is the one below (the main curves are not available here). This window gives the potential buckling mechanism and the corresponding critical buckling load which here is equal to 2719 kN.

Additional results are also accessible from the formatted results file which especially gives all of the buckling loads for each mechanism. The buckling phenomenon is liable to occur when the axial force is close to one of these buckling loads (generally, we make sure that the axial force remains lower, with sufficient safety, than the smallest buckling load called critical load).

		Mode de fla	mbement critique	
Charges de flamb	ement pour chaque mode	Xn	Yn	
Mode	Charge	0.000	0 4 405 07	
	-	0.000	-0.149E-07	
001	0.272E+04	0.155	0.223E-02	
002	0.303E+04	0.400	0.530E-02	
003	0.471E+04	0.533	0.987E-02	
004	0.553E+04	0.667	0.160E-01	
005	0.613E+04	0.800	0.238E-01	
006	0.744E+04	0.933	0.330E-01	
007	0.853E+04	1,067	0.437E-01	
008	0.105E+05	1,200	0.556E-01	
009	0.123E+05	1,333	0.685E-01	
010	0.147E+05	1,467	0.818E-01	
011	0.166E+05	1,600	0.952E-01	
012	0.188E+05	1,733	0.108E+00	
013	0.201E+05	1.867	0.120E+00	
014	0.221E+05	2.000	0.130E+00	
015	0.238E+05	2,133	0.137E+00	
016	0.273E+05	2.267	0.141E+00	
017	0.285E+05	2,400	0.141E+00	
018	0.316E+05	2.533	0.135E+00	
019	0.340E+05	2.667	0.123E+00	
020	0.374E+05	2.800	0.105E+00	
021	0.410E+05	2.933	0.785E-01	
022	0.448E+05	3.067	0.441E-01	
023	0.488E+05	3.200	0.118E-02	
024	0.530E+05	3.333	-0.504E-01	
025	0.573E+05	3.467	-0.111E+00	
026	0.619E+05	3.600	-0.179E+00	
027	0.666E+05	3.733	-0.255E+00	
028	0.715E+05	3.867	-0.336E+00	
029	0.766E+05	4.000	-0.423E+00	
030	0.819E+05	4.200	-0.555E+00	
031	0.874E+05	4.400	-0.684E+00	
032	0.931E+05	4.600	-0.800E+00	
033	0.989E+05	4.800	-0.897E+00	
034	0.105E+06	5.000	-0.965E+00	
035	0.111E+06	5.200	-0.100E+01	
036	0.1182+06	5.400	-0.997E+00	
037	0.1242+06	5.600	-0.955E+00	
038	0.1312+06	5.800	-0.874E+00	
039	0.1382706	6.000	-0.756E+00	
040	0.14525-06	6.200	-0.605E+00	
041	0.1522706	6.400	-0.428E+00	
042	0.1685+06	6.600	-0.2322+00	
045	0.1765+06	6.800	-0.2/5E-01	
045	0 1845+06	7.000	0.1772+00	
045	0 1935+06	7.200	0.3/32+00	
047	0.2015+06	7.400	0.3512+00	
048	0.2010+06	7.600	0.8225+00	
048	0.2195+06	7.800	0.0222+00	
050	0.2295+06	8.000	0.9495+00	
050	0.220000	8.200	0.9555+00	
052	0.2475+06	8,400	0.9335400	
052	0.257E+06	8,800	0.8595+00	
054	0.2575+06	9,000	0.7675+00	
055	0.277E+06	9,200	0.6565+00	
056	0.2885+06	9,400	0.534E+00	
050	0.2000100	5.400	0.0046100	

G.4.4.2. Step 2: Quantification of 2nd order effects under the effect of a transverse load

We will use the same soil cross-section and the same pile but we will this time focus on the quantification of the second order effects under the effect of a transverse load.

We will therefore modify the data with respect to the first step of this example.

G.4.4.2.1. "Parameters" tab

Pile 1/1 : Example 4 step 2 Parameters O Solible O External loads	no vile 🛛 🖏 Free o(7) soil displacement	
Calculation type		General setting
Pile calculation under transverse k	ads	v
by manual input (2 plates	ux)	~
Calculation parameters		
Calculation title	Example 4 step 2	
Reference elevation (m)		0,00
Inclination angle of the pile (°)		0,00 🗘
Pile family	No family	Load incrementation
	Calculation	

"Calculation type" box:

 Select: "Pile calculation under transverse loads" ⇒ "By manual input (2 plateaux)"

G.4.4.2.2. "Soil/pile" tab

Parameters 💽	ole 4 step 2 📡 Soil/pile 💙 External	loads on pile 🛛 🕈 Free g(z) soil	displacement			
al lavora dofinitio						Soil/pi
M ^o	Name	Colour 2	Z	k,	Pmax	В
1	Layer 1		-4,00	2,00E04	400,00	0
2	Layer 2		-10,00	2,50E03	100,00	0
3	Layer 3		-13,00	1,00E05	3000,00	0
Layers r	iumber : 3	De	atabase		+ 1	i 🖿 🔦 🗨
Layers r e discretisation - Consideration	umber: 3 of shear force		atabase		•	1
Layers r e discretisation - Consideration Na	of shear force	h	atabase	El		
Layers r e discretisation Consideration Na yer 1	umber:3 of shear force ime	h 4,0	atabase	EI 1,50E0	3	n 30
Layers r e discretisation - Consideration Na yer 1 yer 2 yer 3	umber : 3 of shear force me	h 4.(6,(3.(00 00 00	EI 1,50E0 1,50E0 1,50E0	3 3 3 3	n 30 30 30
Layers r Layers r Layers r Consideration Ne yer 1 yer 2 yer 3	of shear force	h 4.(00000000000000000000000000000000000000	EI 1,50E0 1,50E0 1,50E0	3	n 30 30 30

"Soil layers definition" box:

The "Plastification pressure of soil" column P_{max} (kPa) has appeared (due to choice of manual input of a 2-plateau mobilisation law).

The data to be completed is as follows:

Name	Z _{base} (m)	k _s (kPa/m)	P _{max} (kPa)	B (m)
Layer 1	-4,0	20000	400	0,25
Layer 2	-10,0	2500	100	0,25
Layer 3	-13,0	100000	3000	0,25

G.4.4.2.3. "External loads on pile" tab

The data of this tab remains unchanged with respect to the previous example (clamping at pile head defined in the form of high values for K and C).

The tab is again accessible ("Pile calculation under transverse loads" mode) and we will activate this option to impose on the pile a load in the form of an imposed soil displacement.

"Define a g(z) displacement" box:

• Tick the "Define a g(z) displacement" box.

g(z) wizard using the Eurocode 7		x				
Definition of compressible horizon						
Horizon roof elevation Z1 (m)	-4,0 🕽	:				
Base elevation of the horizon Z	-10,0 🗘					
Dimensionless definition						
A1 0,50 C	irves —					
A2 1,50 🗘	1					
A3 0,00 🗘						
A4 -2,00 🗘						
Amplitude						
G _{max} (m)	0,0500					
$g(z)=G_{max}^{*}(A1+A2*Z+A3*Z^{2}+A4*Z^{3})$ with $Z=(Z1-z)/(Z1-Z2)$						
Ok Cance						

To obtain the values of curve II in 2nd layer (here, g(z) is defined between elevations
 -4 and -10 m), click "Wizard" button.

The values to be input are as follows:

Z1 (m)	Z2 (m)	Curve	A1	A2	A3	A4	G _{max} (m)
-4,0	-10,0	П	0,50	1,50	0,00	-2,00	0,05

Save the project under a different name: "Example 04b" for example.

G.4.4.2.5. Calculation and results

Start the calculation by clicking **Start** calculation button then display the results.

The results obtained call for following comments:

- \Rightarrow Main results: these illustrate the strains and loads generated under the effect of the lateral earth pressures. The loads obtained (bending moment) are around 18 kN.m.
- \Rightarrow Buckling and 2nd order effects
 - ✓ We can see that the critical load is unchanged with respect to the calculation of the first step. This implicitly indicates absence of any soil plastification;
 - ✓ The first graph compares the critical buckling mechanism with the initial displacement of the pile obtained under the imposed transverse load. If the pile must take high axial loads, the case of an initial displacement "imitating" the potential buckling mechanism must be avoided as this is a situation which favours the development of 2nd order effects;
 - ✓ The 2nd and 3rd graphs give the amplification of the displacements and loads under the (2nd order) effect of an axial load from 0 to 80% of the critical buckling load. Especially, for an axial load equal to 80% of the critical load, the maximum bending moment is around 70 kN.m, that is around 4 times its initial value. This observation is representative of situations where 2nd order effects affect the design of the pile and can lead to failure by composed bending of the material constituting the pile for axial load levels well below the critical buckling load.

Curves related to buckling:

