

Part K: FONDPROF Module

K.1.	INTRODUCTION	. 4
K.2.	THEORETICAL ASPECTS	. 4
	K.2.1. Bearing capacity limit states K.2.1.1. Limit load Q_1 K.2.1.2. Creep load Q_c	4
	K.2.2. Pile classification	5
	K.2.3. Geometry	6
	 K.2.4. Calculation of q_p and q_s from the MPT pressuremeter results K.2.4.1. Base resistance pressure q_p K.2.4.2. Limit unit shaft friction q_s 	6
	K.2.5. Calculation of q_p and q_s from the results of the CPT static penetrometer K.2.5.1. Base resistance pressure q_p K.2.5.2. Limit unit shaft friction q_s	10
	 K.2.6. SLS / ULS bearing capacity K.2.6.1. Formulation K.2.6.2. Case of a pile working in compression 	14 15
	K.2.6.3. Case of a pile working in traction	15
K.3.	USER'S GUIDE	
K.3.		16
K.3.	USER'S GUIDE	16 16 17 18 20
K.3.	USER'S GUIDE K.3.1. Management of piles K.3.2. "Parameters" tab K.3.2.1. "Calculation context" frame K.3.2.2. "Pile geometry" frame	16 17 18 20 20 23 23 23
K.3.	USER'S GUIDE K.3.1. Management of piles K.3.2. "Parameters" tab K.3.2.1. "Calculation context" frame K.3.2.2. "Pile geometry" frame K.3.2.3. "Weighting system" frame K.3.3.1. "Soil layers definition" frame K.3.3.1. "Soil layers definition" frame K.3.3.2. Help diagrams and wizards	16 17 18 20 20 23 23 25 32
K.3.	USER'S GUIDE K.3.1. Management of piles. K.3.2. "Parameters" tab. K.3.2.1. "Calculation context" frame K.3.2.2. "Pile geometry" frame. K.3.2.3. "Weighting system" frame K.3.3.1. "Soil layers definition" frame. K.3.3.1. "Soil layers definition" frame. K.3.3.2. Help diagrams and wizards. K.3.3.3. Data import.	16 17 18 20 20 23 23 25 32 35 36 36
	USER'S GUIDE K.3.1. Management of piles K.3.2. "Parameters" tab K.3.2.1. "Calculation context" frame K.3.2.2. "Pile geometry" frame K.3.2.3. "Weighting system" frame K.3.3. "Layers" tab K.3.3.1. "Soil layers definition" frame K.3.3.2. Help diagrams and wizards K.3.3.3. Data import K.3.4. "Calculation" tab K.3.5. Calculation and results K.3.5.1. Calculation	16 17 18 20 20 23 25 32 35 36 36 36 36

K.4.1.1. Calculation of bearing capacity for a given pile depth	40
K.4.1.2. Calculation of bearing capacity for a given pile stress	
K.4.2. Example 2	52
K.4.2.1. Data input	
K.4.2.2. "Parameters" tab	
K.4.2.3. "Layers" tab	54
K.4.2.4. "Calculation" tab	58
K.4.2.5. Calculations and results	58

TABLE OF FIGURES

Figure K.1 : FONDPROF Module – Pile axial loading curve	4
Figure K.2 : Choice of A and P for a non-circular section	6
Figure K.3 : Curves f _{sol} (p _l) - pressuremeter method (Appendix F - NF P 94 262)	10
Figure K.4 : Curves f _{sol} (q _c) – penetrometer method (Appendix G - NF P 94 262)	14
Figure K.5 : Management of piles in the Fondprof module	16
Figure K.6 : "Parameters" tab – Examples of input zones	17
Figure K.7 : Principle of data processing by layers	18
Figure K.8 : Principle of data processing by measurements	19
Figure K.9 : Prohibited use of processing by measurements in the case of average values per layer	19
Figure K.10 : Pile geometry: data to be input	
Figure K.11 : Help diagram: Calculation section	
Figure K.12 : EC7 – Standard NF.P 94-262: Weighting details	
Figure K.13 : "Layers" tab – Examples of input tables	
Figure K.14 : "Layers" tab - EC7 wizards	
Figure K.15 : Wizard q _{sl} – EC7 – From pressuremeter results	
Figure K.16 : Wizard k _{pmax} – EC7	
Figure K.17 : Automatic wizard q_{sl} and k_{pmax} – EC7 – From pressuremeter results	
Figure K.18 : Wizard q _{sl} – EC7 – Form penetrometer results	
Figure K.19 : Wizard for k _{cmin} and k _{cmax}	28
Figure K.20 : Automatic wizard for q _s , k _{cmin} and k _{cmax} – EC7 – Based on penetrometer results	28
Figure K.21 : Wizard q _s (Fascicle 62) for a "Firm clay and silt" soil	29
Figure K.22 : Wizard kp (Fascicle 62) for a "soft clay or silt" type soil	29
Figure K.23 : Help diagram: Conventional soil classification	30
Figure K.24 : Help diagram: Bearing factor values kp	30
Figure K.25 : Help diagram: Friction q _s	31
Figure K.26 : Help diagram: Pile classification	31
Figure K.27 : Help diagram: Bearing factor values kc	32
Figure K.28 : Data import wizard	33
Figure K.29 : Table modification wizard	33
Figure K.30 : Format of spreadsheet to be imported (EC7 regulatory framework – pressuremeter design)	34
Figure K.31 : Format of spreadsheet to be imported (regulatory framework EC7 – penetrometer design)	34
Figure K.32 : Format of spreadsheet to be imported (other regulatory frameworks – pressuremeter design)	34
Figure K.33 : Format of spreadsheet to be imported (other regulatory frameworks –	
penetrometer design)	35
Figure K.34 : Calculation criterion: Imposed load at pile head	35
Figure K.35 : Calculation criterion: Imposed stress at pile head	35

Figure K.36 : Calculation criterion: Imposed length	36
Figure K.37 : Results window	37
Figure K.38 : Formatted numerical results (case of EC7 regulatory framework)	38
Figure K.39 : Results table (case of EC7 regulatory framework)	39
Figure K.40 : Superposed bearing capacity curves (case of EC7 regulatory framework)	

TABLE OF TABLES

Table K.1 : Classification of piles (Appendix A – NF P 94 262)	5
Table K.2 : Pressuremeter bearing coefficient k_{pmax} for $D_{ef} > 5 B$ (Appendix F - NF P 94 262)	7
Table K.3 : Values of q _s ^{max} – pressuremeter method (Appendix F - NF P 94 262)	8
Table K.4 : Values of parameter α _{pile-soil} - pressuremeter method (Appendix F - NF P 94 262)	10
Table K.5 : Penetrometer bearing coefficient k_{cmax} for $D_{ef} > 5 B$ (Appendix G - NF P 94 262)	11
Table K.6 : Values of q_s^{max} – penetrometer method (Appendix G - NF P 94 262)	12
Table Κ.7 : Values of parameter α _{pile-soil} - penetrometer method (Appendix G - NF P 94 262)	13
Table K.8 : Values of F_{qs} and F_{qp} for a pile working in compression	15
Table K.9 : Values of F_{qs} and F_{qp} for a pile working in traction	15
Table K.10 : Fields of the "Weighting system" frame: display conditions	21
Table K.11 : Combined weightings $Q_s - Q_p$	22
Table K.12 : Soil layers data	24
Table K.13 : Soil classes display conditions (regulatory framework EC7)	24
Table K.14 : Calculation criteria	36

K.1. Introduction

The purpose of the Fondprof module is to calculate the bearing capacity of a single pile in accordance with the french standard in force NF P 94 262. It is also used for calculation in accordance with the former french rules of Fascicle 62 or DTU 13.2 (retained simply for information).

K.2. Theoretical aspects

The Fondprof module is a calculation programme for predicting the limit load Q_l , and the maximum authorised loads under ULS and SLS loadings, based on pressuremeter or penetrometer test results. It is based on the concepts and formulations recommended by the limit state regulations in force in France (currently standard NF P 94 262, which replaces the provisions of Fascicle 62-Title V of the CCTG and those of DTU 13.2). The following chapters specify the methodology adopted for evaluation of the loads, along with the various physical quantities and notations.

As defined in standard NF P 94 262, the calculation procedure applied by Fondprof is comparable to the "**field model**" procedure.

K.2.1. Bearing capacity limit states

K.2.1.1. Limit load Q

We consider a pile with a base situated at depth D in a homogeneous soil (Figure K.1). This pile, the weight of which is ignored, is axially loaded at the pile head by a load Q. At the moment of failure, the load Q_l is balanced by the following soil limit reactions:

- Unit soil resistance under base q_p, leading to the base limit load: Q_p = q_p.A with A being the straight section of the base;
- Resistance q_{sl} due to soil friction on the lateral surface of the pile; if q_s is the limit unit shaft friction, the shaft friction limit load is:
 - $Q_s = q_s.P.D$ with P the pile drilling perimeter.

And we have:

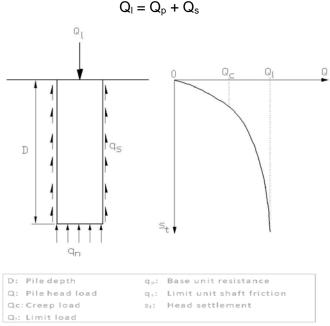


Figure K.1 : FONDPROF Module - Pile axial loading curve

K.2.1.2. Creep load Q_c

The curve representing the load applied to the pile according to the settlement has an appreciably linear part limited to load Q_c called the creep load (Figure K.2). For loads higher than Q_c , settlement of the pile is no longer stabilised with time, at constant load.

Numerous full-scale pile loading tests carried out by the Ponts et Chaussées laboratories have established correlations between the creep load Q_c and the base limit Q_p and shaft friction Q_s loads. These correlations differ according to the mode of installation of the pile in the soil. The following relations can be established:

- for piles implemented with lateral soil displacement: $Q_c = 0.7Q_s + 0.7Q_p$
- for piles implemented without lateral soil displacement: $Q_c = 0.7Q_s + 0.5Q_p$

The design methods given in the following sections aim to determine the limit load Q_l . The creep load Q_c will be deduced from this using empirical formulas, except in the case of the static load test, in which case it can be evaluated directly.

K.2.2. Pile classification

The following table gives the pile classification applied by Fondprof in accordance with standard NF P 94 262. The piles are classified into 8 classes and 20 categories.

Class	Category	Implementation technique	Abbreviation	Reference standard
	1	Bored pile (no support)	FS	
	2	Bored pile with slurry	FB	
1	3	Bored pile (permanent casing)	FTP	NF EN 1536
	4	Bored pile (recoverable casing)	FTR	
	5	Dry Bored Pile / or Slurry Bored Pile with Grooved /Sockets	FSR, FBR, PU	
2	6	CFA pile		
7		Screw cast in place pile	VM	
3	8	Screw piles with casing	VT	NF EN 12699
	9	Closed-ended driven pile : pre-cast or pre-stressed / concrete	BPF, BPR	
4	10	Closed-ended driven piles : coated driven Steel Pile (coating: concrete, mortar, grout)	BE	NF EN 12699
	11	Closed-ended driven piles : driven cast-in-place Pile	ВМ	
	12	Closed-ended driven piles : driven steel pile, closed-ended	BAF	
5	13	Driven steel pile, open-ended	BAO	NF EN 12699
_	14	Driven H piles	HB	
6	15	Driven grouted H Pile	HBi	NF EN 12699
7	16	Driven sheet pile walls	PP	NF EN 12699
	17	Micropile I (gravity pressure)	M1	
1bis	18	Micropile II (low pressure)	M2	NF EN
	19	Micropile III (high pressure)	PIGU, MIGU	1536/14199/12699
8	20	Micropile IV (high pressure with TAM)	PIRS, MIRS	

Table K.1 : Classification of piles (Appendix A – NF P 94 262)

K.2.3. Geometry

The pile is characterised geometrically by means of the following parameters:

- Base section noted "A";
- Shaft perimeter noted "P".

B is the base diameter of the pile. In the case of a non-circular section, the value of B is deduced from section A by means of the following formula:

For piles with a non-circular section, the values of A and P are those given in the following figure.

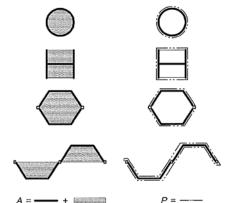


Figure K.2 : Choice of A and P for a non-circular section

K.2.4. Calculation of q_p and q_s from the MPT pressuremeter results

K.2.4.1. Base resistance pressure qp

The base resistance pressure of a single pile can be expressed using the following formula:

$$\mathbf{q}_{\mathrm{p}} = \mathbf{k}_{\mathrm{p}} \cdot \mathbf{p}_{\mathrm{le}}^{*}$$

• The equivalent base limit pressure p_{le}* is obtained with the formula:

$$p_{le}^{*} = \frac{1}{b+3a} \int_{D-b}^{D+3a} p_{l}^{*}(z) dz \qquad \text{with} \qquad \begin{cases} a = \max\left(\frac{B}{2}, 0.5m\right) \\ b = \min(h, a) \end{cases}$$

Where "h" is the embedded depth of a pile in the support layer.

• The pressuremeter bearing coefficient k_p is expressed by the following formula:

$$k_{p} = \min\left(1 + (k_{p \max} - 1)\frac{D_{ef}}{5B}, k_{p \max}\right) \text{ with } D_{ef} = \frac{1}{p_{le}^{*}} \int_{D-10B}^{D} p_{l}^{*}(z)dz$$

 D_{ef} is called the equivalent embedment depth. The values of $k_p = k_{pmax}$ for $D_{ef} > 5B$ are specified in the following figure. It should be noted that these values already include the ρ_p reduction coefficients usually applied to open sections.

Soil	Clay	Intermediate		Marl and	Weathered			
Pile class (c)	% CaCO3 < 30% Silt Intermediate soils	soils Sand Gravel	Chalk	marly limestone	and fragmented rock (a)			
1	1.15 (b)	1.1 (b)	1.45 (b)	1.45 (b)	1.45 (b)			
2	1.3	1.65	1.6	1.6	2.0			
3	1.55	3.2	2.35	2.10	2.10			
4	1.35	3.1	2.30	2.30	2.30			
5 #	1.0	1.9	1.4	1.4	1.2			
6 #	1.20	3.10	1.7	2.2	1.5			
7 #	1.0	1.0	1.0	1.0	1.2			
8	1.15 (b)	1.1 (b)	1.45 (b)	1.45 (b)	1.45 (b)			
Table K.2 : Pressuremeter bearing coefficient k_{pmax} for $D_{ef} > 5 B$ (Appendix F - NF P 94 262)								

Note: refer to appendix F of standard NF P 94 262 for points (a), (b), (c) and #.

K.2.4.2. Limit unit shaft friction q_{s}

The limit shaft friction q_s that can be mobilised in a given layer is expressed by means of the following equation:

$$q_s = min (q_s^{max}, \alpha_{pile-soil} x f_{soil})$$

- q_s^{max} designates the maximum friction that can be mobilised for a given soil type and pile category. The values of q_s^{max} are specified in Table K.3. It should be noted that these values already include the ρ_s reduction coefficients usually applied for open sections.
- α_{pile-soil} is a dimensionless parameter which depends both on the type of pile and the type of soil. Its values are specified in Table K.4.

 f_{soil} depends on the intrinsic resistance of the soil, here represented by the limit pressure. The value of f_{soil} is obtained by correlation with the limit pressure according to the curves in Figure K.3.

		Values in kPa					
N°	Abbreviat°	Technique implementation	Clay % CaCO3 < 30% Silt Intermediate soils	Intermediate soils Sand Gravel	Chalk	Marl and marly limestone	Weathered and fragmented rock
1	FS ##	Bored pile (no support)	90	90	200	170	200
2	FB ##	Bored pile with slurry	90	90	200	170	200
3	FTP	Bored pile (permanent casing)	50	50	50	90	
4	FTR	Bored pile (recoverable casing)	90	90	170	170	
5	FSR, FBR, PU ##	Dry Bored Pile / or Slurry Bored Pile with Grooved /Sockets	90				
6	FTC, FTCD	CFA pile	90	170	200	200	200
7	VM	Screw cast in place pile	130	200	170	170	
8	VT	Screw piles with casing	50	90	90	90	
9	BPF**, BPR**	Closed-ended driven pile : pre-cast or pre-stressed / concrete	130	130	90	90	
10	BE**	Closed-ended driven piles : coated driven Steel Pile (coating: concrete, mortar, grout)	170	260	200	200	
11	BM**	Closed-ended driven piles : driven cast-in-place Pile	90	90	50	90	
12	BAF**	Closed-ended driven piles : driven steel pile, closed- ended	90	90	50	90	
13	BAO** #	Driven steel pile, open-ended	90	50	50	90	90
14	HB** #	Driven H piles	90	130	50	90	90
15	HBi**	Driven grouted H Pile	200	380	320	320	320
16	PP** #	Driven sheet pile walls	90	50	50	90	90
17	M1	Micropile I (gravity pressure)					
18	M2	Micropile II (low pressure)					
19	PIGU, MIGU	Micropile III (high pressure)	200	380	320	320	320
20	PIRS, MIRS	Micropile IV (high pressure with TAM)	200	440	440	440	500

Table K.3 : Values of qs^{max} – pressuremeter method (Appendix F - NF P 94 262)

			Value in kPa				
N°	Abbrev.	Technique implementation	Clay % CaCO3 < 30% Silt Intermediate soils	Intermediate soils Sand Gravel	Chalk	Marl and marly limestone	Weathered and fragmented rock
1	FS ##	Bored pile (no support)	1,1	1	1,8	1,5	1,6
2	FB ##	Bored pile with slurry	1,25	1,4	1,8	1,5	1,6
3	FTP	Bored pile (permanent casing)	0,7	0,6	0,5	0,9	
4	FTR	Bored pile (recoverable casing)	1,25	1,4	1,7	1,4	
5	FSR, FBR, PU ##	Dry Bored Pile / or Slurry Bored Pile with Grooved /Sockets	1,3				
6	FTC, FTCD	CFA pile	1.5	1.8	2.1	1.6	1.6
7	VM	Screw cast in place pile	1.9	2.1	1.7	1.7	
8	VT	Screw piles with casing	0.6	0.6	1	0.7	
9	BPF**, BPR**	Closed-ended driven pile : pre-cast or pre- stressed / concrete	1.1	1.4	1	0.9	
10	BE**	Closed-ended driven piles : coated driven Steel Pile (coating: concrete, mortar, grout)	2	2.1	1.9	1.6	
11	BM**	Closed-ended driven piles : driven cast-in- place Pile	1.2	1.4	2.1	1	
12	BAF**	Closed-ended driven piles : driven steel pile, closed- ended	0.8	1.2	0.4	0.9	
13	BAO** #	Driven steel pile, open- ended	1.2	0.7	0.5	1	1
14	HB** #	Driven H piles	1.1	1	0.4	1	0.9
15	HBi**	Driven grouted H Pile	2.7	2.9	2.4	2.4	2.4
16	PP** #	Driven sheet	0.9	0.8	0.4	1.2	1.2

			Value in kPa				
N°	Abbrev.	Technique implementation	Clay % CaCO3 < 30% Silt Intermediate soils	Intermediate soils Sand Gravel	Chalk	Marl and marly limestone	Weathered and fragmented rock
		pile walls					
17	M1	Micropile I (gravity pressure)					
18	M2	Micropile II (low pressure)					
19	PIGU, MIGU	Micropile III (high pressure)	2.7	2.9	2.4	2.4	2.4
20	PIRS, MIRS	Micropile IV (high pressure with TAM)	3.4	3.8	3.1	3.1	3.1

Table K.4 : Values of parameter $\alpha_{\text{pile-soil}}$ - pressuremeter method (Appendix F - NF P 94 262)

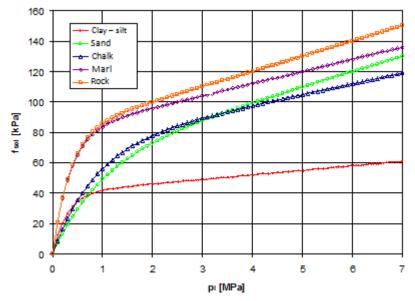


Figure K.3 : Curves f_{sol}(p) - pressuremeter method (Appendix F - NF P 94 262)

Note: refer to Appendix F of standard NF P 94 262 for points (a), (b), (c), # and ##.

K.2.5. Calculation of q_p and q_s from the results of the CPT static penetrometer

K.2.5.1. Base resistance pressure qp

The base resistance pressure of a single pile can be expressed using the following equation:

$$\mathbf{q}_{p} = \mathbf{k}_{c} \cdot \mathbf{q}_{ce}$$

• The equivalent resistance pressure q_{ce} is obtained (after smoothing) with the equation:

$$q_{ce} = \frac{1}{b+3a} \int_{D-b}^{D+3a} q_{cc}(z) dz \qquad \text{with} \qquad \begin{cases} a = \max\left(\frac{B}{2}, 0.5m\right) \\ b = \min(h, a) \end{cases}$$

Where "h" is the embedded depth of the pile in the support layer.

• The penetrometer bearing coefficient k_c is expressed using the equation:

$$k_c = \min\left(k_{c\min} + \left(k_{c\max} - k_{c\min}\right)\frac{D_{ef}}{5B}, k_{c\max}\right) \text{ with } D_{ef} = \frac{1}{q_{ce}} \int_{D-10B}^{D} q_c(z) dz$$

 D_{ef} is called the equivalent embedment depth. The bearing coefficient for nil embedment k_c = k_{cmin} is taken as equal to:

- \checkmark 0.30 for a clayey soil;
- \checkmark 0.20 for an intermediate soil;
- ✓ 0.10 for sand and gravel;
- \checkmark 0.15 for chalk, marl or weathered rock.

The values of $k_c = k_{cmax}$ for $D_{ef} > 5$ B are specified in the following figure. It should be noted that these values include the ρ_p reduction coefficients usually applied for open sections.

Soil Pile class (c)	Clay % CaCO3 < 30% Silt	Intermediate soil	Sand Gravel	Chalk	Marl and marly limestone	Weathered and fragmented rock (a)
1	0.4 (b)	0.3 (b)	0.2 (b)	0.3 (b)	0.3 (b)	0.3 (b)
2	0.45	0.3	0.25	0.3	0.3	0.3
3	0.5	0.5	0.5	0.4	0.35	0.35
4	0.45	0.4	0.4	0.4	0.4	0.4
5 #	0.35	0.3	0.25	0.15	0.15	0.15
6 #	0.4	0.4	0.4	0.35	0.2	0.2
7 #	0.35	0.25	0.15	0.15	0.15	0.15
8	0.45 (b)	0.3 (b)	0.2 (b)	0.3 (b)	0.3 (b)	0.25 (b)

Table K.5 : Penetrometer bearing coefficient k_{cmax} for $D_{ef} > 5 B$ (Appendix G - NF P 94 262)

Note: refer to Appendix G of standard NF P 94 262 for points (a), (b), (c) and #.

K.2.5.2. Limit unit shaft friction qs

The limit shaft friction q_s that can be mobilised in a given layer is expressed using the following equation:

$q_s = min (q_s^{max}, \alpha_{pile-soil} x f_{soil})$

- q_s^{max} designates the maximum friction that can be mobilised for a given soil type and pile category. The values of q_s^{max} are specified in Table K.6. It should be noted that these values include the ρ_s reduction coefficients usually applied for open sections.
- α_{pile-soil} is a dimensionless parameter which depends on both the type of pile and the type of soil. Its values are specified in Table K.7.
- f_{soil} is a function of the intrinsic soil resistance, here represented by the base pressure q_c. The value of f_{soil} is obtained by correlation with q_c according to the curves in Figure K.5.

N°	Abbreviation	Implementation technique	Clay % CaCO₃< 30 % Silt	Intermediate soils	Sand Gravel	Chalk	Marl and Marly limestone	Weathered or fragmented rock

FS ##	Bored pile (no						
	support)	90	90	90	200	170	200
FB ##	Bored pile with slurry	90	90	90	200	170	200
FTP	Bored pile (permanent casing)	50	50	50	50	90	
FTR	Bored pile (recoverable casing)	90	90	90	170	170	
FSR, FBR, PU ##	Dry Bored Pile / or Slurry Bored Pile with Grooved /Sockets	90	90				
FTC, FTCD	CFA pile	90	90	170	200	200	200
VM	Screw cast in place pile	130	130	200	170	170	
VT	Screw piles with casing	50	50	90	90	90	
BPF**, BPR**	Closed-ended driven pile : pre- cast or pre- stressed / concrete	130	130	130	90	90	
BE**	Closed-ended driven piles : coated driven Steel Pile (coating: concrete, mortar, grout)	170	170	260	200	200	
BM**	Closed-ended driven piles : driven cast-in- place Pile	90	90	130	260	200	
BAF**	Closed-ended driven piles : driven steel pile, closed-ended	90	90	90	50	90	
BAO** #	Driven steel pile, open-ended	90	90	50	50	90	90
HB** #	Driven H piles	90	90	130	50	90	90
HBi**	Driven grouted H Pile	200	200	380	320	320	320
PP** #	Driven sheet pile walls	90	90	50	50	90	90
M1	Micropile I (gravity pressure)						
M2	Micropile II (low pressure)						
PIGU, MIGU	Micropile III (high pressure)	200	200	380	320	320	320
PIRS, MIRS	Micropile IV (high pressure with TAM)	200	200	440	440	440	500
	FTP FTR FTR, FBR, PU ## FSR, FBR, PU ## FTC, FTCD VM VT BPF**, S BB** BM** BAF** BAAF** PP** # M1 M2 PIGU, MIGU	PB ##slurryFTPBored pile (permanent casing)FTRBored pile (recoverable casing)FTRDry Bored Pile / or Slurry Bored Pile / or Slurry Bored Pile / or Slurry Bored / Screw cast in place pileVMScrew cast in place pileVTScrew piles with casingBPF**Closed-ended driven piles : coated driven Steel Pile (coating: concrete, mortar, grout)BM**Closed-ended driven piles : driven pile	PB ##slury90FTPBored pile (permanent casing)50FTRBored pile (recoverable casing)90FTRBored pile (recoverable casing)90FSR, FBR, PU ##Dry Bored Pile / or Slury Bored Pile / or Slure Pile : pre- cast or pre- stressed / concrete, mortar, grout)90BE**Closed-ended driven piles : driven piles : driven cast-in- place Pile90BA**Closed-ended driven piles : driven steel pile, closed-ended90BA**Driven Steel Pile, closed-ended90HB**Driven H piles90HB**Driven steel pile, closed-ended90HB**Driven steel pile, closed-ended	PB ##slurry3090FTPBored pile (permanent casing)5050FTRBored pile (recoverable casing)9090FSR, FBR, PU ##Dry Bored Pile / or Slurry Bored Pile with grooved /Sockets9090FTC, FTCDCFA pile9090VMScrew cast in place pile130130VTScrew piles with casing5050BPF**, BPR**Closed-ended driven pile : pre- cast or pre- stressed / concrete130130BE**Closed-ended driven piles : coated driven place Pile170170BM**Closed-ended driven piles : coated driven place Pile9090BAF**Closed-ended driven piles : coated driven place Pile9090BM**Closed-ended driven piles : coated driven place Pile9090BAF**Closed-ended driven piles : driven cast-in- place Pile9090BAF**Driven H piles9090BAF**Driven H piles9090HBi**Driven H piles9090HBi**Driven sheet pile verssure)9090M1Micropile II (migh pressure)200200PIGU, MIGUMicropile II (low verssure)200200PIRS, MIRSMicropile II (low (high pressure)200200	PB ##slury909090FTPBored pile (permanent casing)505050FTRBored pile (recoverable casing)909090FSR, FBR, PU ##Dry Bored Pile / r Slurry Bored Po slurry Bored Po slurry Bored (sockets)909090FTC, FTCDCFA pile9090170VMScrew cast in place pile130130200VTScrew piles with casing505090BPF**Closed-ended driven pile : pre- cast or pre- streessed / corated driven steel Pile (coating: corater, mortar, grout)110130BM**Closed-ended driven piles : rotreested driven steel Pile (coating: corater, mortar, grout)9090130BAF**Closed-ended driven piles : driven cast-in- place Pile90909090BM**Closed-ended driven piles : driven steel pile, coacted driven place Pile9090130BAF**Closed-ended driven piles : driven steel pile, closed-ended driven steel pile, closed-ended driven steel pile, scosed-ended909050BAO** #Driven steel pile, open-ended9090130HBi**Driven steel pile, driven	PB ## slurry 90 90 90 90 200 FTP Bored pile (permanent casing) 50 50 50 50 FTR Bored pile (recoverable casing) 90 90 90 90 170 FSR, FBR, PU ## Dry Bored Pile / or Slurry Bored Pile with Grooved 90 90 90 170 200 VM Screw cast in place pile 90 90 90 170 200 VT Screw piles with casing 50 50 90 90 90 BF** Closed-ended driven piles : coated driven stees Set / concrete 130 130 130 130 90 BM** Closed-ended driven piles : coated driven steel pile, coated riven piles : coated driven place Pile 170 170 260 200 BM** Closed-ended driven piles : chriven steel pile, closed-ended 90 90 90 50 50 BAG** # Driven steel pile, closed-ended 90 90 50 50 BAG** # Driven steel pile, closed-ende	PB ## slury 90 90 90 200 170 FTP Bored pile (recoverable casing) 50 50 50 50 90 FTR Bored pile (recoverable casing) 90 90 90 90 170 170 FSR, FBR, PU ## Dry Bored Pile / Pile with Grooved /Sockets 90 90 90 170 200 200 YM Screw casin 130 130 200 170 170 VT Screw piles with casing 50 50 90 90 90 BF*** Closed-ended driven piles : concrete 130 130 130 90 90 BE*** Closed-ended driven piles : concrete 170 170 260 200 200 BM** Closed-ended driven piles : concrete 170 170 260 200 200 BAF** Closed-ended driven piles : driven steel pile 90 90 50 50 90 BAF** Driven steel pile, open-ended

Table K.6 : Values of q_s^{max} – penetrometer method (Appendix G - NF P 94 262)

N°	Abbrev.	Implementation technique	Clay % CaCO₃< 30 % Silt	Intermediate soils	Sand Gravel	Chalk	Marl and Marly limestone	Weathered or fragmented rock
1	FS ##	Bored pile (no support)	0.65	0.65	0.70	0.80	1.40	1.50
2	FB ##	Bored pile with slurry	0.65	0.80	1.00	0.80	1.40	1.50
3	FTP	Bored pile (permanent casing)	0.35	0.40	0.40	0.25	0.85	
4	FTR	Bored pile (recoverable casing)	0.65	0.80	1.00	0.75	0.13	
5	FSR, FBR, PU ##	Dry Bored Pile / or Slurry Bored Pile with Grooved /Sockets	0.70	0.85				
6	FTC, FTCD	CFA pile	0.75	0.90	1.25	0.95	1.50	1.50
7	VM	Screw cast in place pile	0.95	1.15	1.45	0.75	1.60	
8	VT	Screw piles with casing	0.30	0.35	0.40	0.45	0.65	
9	BPF**, BPR**	Closed-ended driven pile : pre- cast or pre- stressed / concrete	0.55	0.65	1.00	0.45	0.85	
10	BE**	Closed-ended driven piles : coated driven Steel Pile (coating: concrete, mortar, grout)	1.00	1.20	1.45	0.85	1.50	
11	BM**	Closed-ended driven piles : driven cast-in- place Pile	0.60	0.70	1.00	0.95	0.95	
12	BAF**	Closed-ended driven piles : driven steel pile, closed-ended	0.40	0.50	0.85	0.20	0.85	
13	BAO** #	Driven steel pile, open-ended	0.60	0.70	0.50	0.25	0.95	0.95
14	HB** #	Driven H piles	0.55	0.65	0.70	0.20	0.95	0.85
15	HBi**	Driven grouted H Pile	1.35	1.60	1.00	1.10	2.25	2.25
16	PP** #	Driven sheet pile walls	0.45	0.55	0.55	0.20	1.25	1.15
17	M1	Micropile I (gravity pressure)						
18	M2	Micropile II (low pressure)						
19	PIGU, MIGU	Micropile III (high pressure)	1.3	1.60	2.00	1.10	2.25	2.25
20	PIRS, MIRS	Micropile IV (high pressure with TAM)	1.70	2.05	2.65	1.40	2.90	2.90

Table K.7 : Values of parameter $\alpha_{pile-soil}$ - penetrometer method (Appendix G - NF P 94 262)

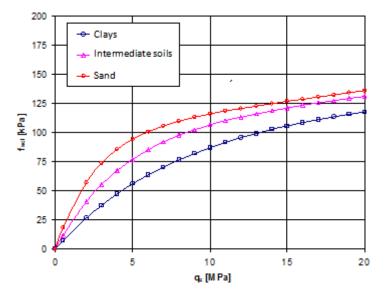


Figure K.4 : Curves $f_{sol}(q_c)$ – penetrometer method (Appendix G - NF P 94 262)

Note: refer to Appendix G of standard NF P 94 262 for points (*), (**), # and ##.

K.2.6. SLS / ULS bearing capacity

K.2.6.1. Formulation

The calculation value for the bearing capacity of a single pile at SLS or ULS (with regard to the soil resistance mobilisation limit states) is estimated using the following equation:

$$Q_d = \frac{1}{F_{qs}} P. \int_0^D q_s(z) dz + \frac{1}{F_{qp}} A. q_p$$

Where:

- F_{qs}: "combined" safety factor applied to limit shaft friction;
- F_{qp}: "combined" safety factor applied to base resistance pressure.

The values of F_{qs} and F_{qp} are obtained by combining several partial coefficients:

$$F_{qs} = (\gamma_{Rd1} \times \gamma_{Rd2} \times \gamma_s) / \beta_1 \qquad \qquad F_{qp} = (\gamma_{Rd1} \times \gamma_{Rd2} \times \gamma_b) / \beta_2$$

- The partial coefficients of model γ_{Rd1} and γ_{Rd2} are dependent both on the pile category and the calculation method considered (pressuremeter or penetrometer);
- The partial pressure coefficients γ_b (base) and γ_s (friction) depend on the loading mode (compression/traction) and the combination of actions (permanent or characteristic SLS, fundamental or accidental ULS) considered;
- The correlation parameters (for the creep load) β_1 and β_2 are taken as equal to:
 - $\checkmark \quad \beta_1 = \beta_2 = 1.0 \qquad \text{at ULS};$
 - ✓ $\beta_1 = \beta_2 = 0.7$ at SLS for piles with lateral soil displacement;
 - \checkmark $\beta_1 = 0.7$ and $\beta_2 = 0.5$ at SLS for piles without lateral soil displacement.

The values of $q_{s}(z)$ and q_{p} are obtained according to the approach described in chapters K.2.4 and K.2.5.

K.2.6.2. Case of a pile working in compression

The values of F_{qs} and F_{qp} for a pile working in compression are summarised in the following table (PMT = pressuremeter, CPT = penetrometer).

	Category	Method	Embedded in chalk	SLS QP	SLS CARAC	ULS FOND	ULS ACC
			NO	1.99	1.63	1.39	1.26
Combined	1 to 9, 11 to	PMT	YES	2.42	1.98	1.69	1.54
Combined safety	14 and 16		NO	2.04	1.67	1.43	1.30
factor on Qs		CPT	YES	2.51	2.05	1.75	1.59
	10, 15 and 17 to 20			3.46	2.82	2.42	2.20
			NO	2.79	2.28	1.39	1.26
	1 to 6	PMT	YES	3.39	2.77	1.69	1.54
			NO	2.86	2.34	1.43	4.30
		СРТ	YES	3.51	2.87	1.75	1.59
Combined safety			NO	1.99	1.63	1.39	1.26
factor on	7 to 9, 11 to	PMT	YES	2.42	1.98	1.69	1.54
Qp	14 and 16	0.57	NO	2.04	1.67	1.43	1.30
		CPT	YES	2.51	2.05	1.75	1.59
	10 and 15			3.46	2.82	2.42	2.20
	17 to 20						

Table K.8 : Values of F_{qs} and F_{qp} for a pile working in compression

K.2.6.3. Case of a pile working in traction

The values of F_{qs} and F_{qp} for a pile working in traction are summarised in the following table (PMT = pressuremeter, CPT = penetrometer).

	Category	Method	Embedded in chalk	SLS QP	SLS CARAC	ULS FOND	ULS ACC
	Combined 1 to 9, 11 to		NO	3.30	2.42	1.77	1.62
Question of		PMT	YES	4.00	2.94	2.15	1.96
Combined safety	14 and 16		NO	3.41	2.51	1.83	1.68
factor on Qs		CPT	YES	4.13	3.02	2.21	2.01
	10, 15 and 17 to 20			4.72	3.46	2.53	2.31

Table K.9 : Values of F_{qs} and F_{qp} for a pile working in traction

K.3. User's Guide

This chapter presents the parameters necessary for carrying out a Fondprof calculation, along with the results provided by this module.

The Fondprof module window comprises 3 tabs. All the tabs are visible.

To run a Fondprof calculation, a number of parameters must be input and are specified as and when (certain input zones can only receive data with a physical meaning).

This chapter does not describe the actual user interface and its operations (buttons, menus, etc.): these aspects are dealt with in part C of the manual.

K.3.1. Management of piles

The Fondprof module is used to process one or more piles for a given Foxta project, but the user can only work on one of these piles at time: the number of the "active" pile is displayed above the tabs in the data input window.

- The first time the Fondprof module is opened for a given project, the module comprises a single pile (Pile 1/1). The user must thus fill out this first pile and can then create additional piles if necessary (see below).
- When a Fondprof module already filled out is opened, the default pile displayed is pile 1/n (n being the total number of piles already created in the module). It is then possible to select another pile, add, or delete piles.

Pile 1/2 : Pile 1 Parameters Calculation	
	General settings

Figure K.5 : Management of piles in the Fondprof module

The possible operations on the piles in the Fondprof module are as follows:

- Add a pile: click the 🖢 button: Foxta adds a new blank pile to the project, independently of the previous one, with the same input fields. Its number will be automatically incremented.
- Duplication of current pile: click the button: Foxta adds to the project a pile that is identical to the current pile. The data are duplicated into this new pile but remain modifiable.
- Delete current pile: click the 🚺 button.
- Move to next or previous pile: click the < or > button.

As previously mentioned, it is only possible to "work" on one pile at a time: the user therefore selects the required pile, completes/modifies its data, starts the calculation and then displays the results for this pile. The user can then select another existing pile or create a pile and repeat these operations.

The next chapters describe how to use Fondprof for a given pile.

K.3.2. "Parameters" tab

This first tab comprises three distinct frames.

These contain input fields which differ according to:

- the choice of the "Regulatory framework" in the "Calculation context" frame;
- the type of calculation section chosen in the "Pile geometry" frame;
- the pile class selected in the "Weighting system" frame.

S Parameters S Layers S Calcu		🔍 Parameters 🛛 😳 Layers 🛛 🔊 Calcu		
	General settings		Gene	eral settings
Calculation context		Calculation context		
Regulatory framework	EC 7 - NF.P 94-262 standard	Regulatory framework	French Fascicle 62 Title V	~
Design method	From pressuremeter results	Design method	From pressuremeter results	~
Data processing	Processing by layers	Data processing	Processing by layers	~
Calculation step (m)	0,40	Calculation step (m)		0,40 🗘
Pile geometry		Pile geometry		
Calculation section	Circular section	Calculation section	Circular section	~
Calculation diameter (m)	0,80 🗘	Calculation diameter (m)		0,80 🗘
2		Calculation diameter (III)		0,00 🗸
Welshier and a		Weighting system		
Weighting system		Foundation type	Pile	~
Pile class	Class 1 - Bored pile/micropile	laster and the sector	With displacement	~
Pile category	Category 2 [FB] - Sludge drilled (piles and batten plate)	Implementation mode	With displacement	~
File Category	category z (r b) - Situdge unied (piles and batteri piate)	Load mode	Compression strength	~
	Clamped in chalk			
Load mode	Compression strength	Number of combinations	5	
2000 11000	Compression de organ		Creep SLS - QP SLS - RARE ULS	- FUND ULS - ACC
Combined weighting on Q	ELS-QP ELS-CARAC ELU-FOND ELU-ACC	Combined weighting on Q _s	0,70 0,50 0,64 0	0,71 0,83
Combined weighting on Q _n	0,503 0,615 0,719 0,791 0,359 0,439 0,719 0,791	Combined weighting on Qp	0,70 0,50 0,64 0	0,71 0,83
	Calculation		Calculation	
\checkmark	Start calculation See results	\checkmark	Start calculation	
O Parameters O Layers O Calcu	lation	🗸 Parameters 🗘 🖸 Layers 🗍 🗸 Calcul	Lalian .	
		1		oral cottings
- Calculation context	General settings			eral settings
Calculation context Regulatory framework	General settings	Calculation context	Gene	eral settings
Regulatory framework	General settings	Calculation context Regulatory framework	Gen(~
Regulatory framework Design method	General settings	Calculation context Regulatory framework Design method	DTU 13.2 From pressuremeter results	~
Regulatory framework Design method Data processing	General settings	Calculation context Regulatory framework	Gen(
Regulatory framework Design method Data processing Calculation step (m)	General settings	Calculation context Regulatory framework Design method	DTU 13.2 From pressuremeter results	~
Regulatory framework Design method Data processing	General settings	Calculation context Regulatory framework Design method Data processing	DTU 13.2 From pressuremeter results	v v
Regulatory framework Design method Data processing Calculation step (m) - Pile geometry-	General settings	- Calculation context Regulatory framework Design method Data processing Calculation step (m)	DTU 13.2 From pressuremeter results	
Regulatory framework Design method Data processing Calculation step (m)	General settings	- Calculation context Regulatory framework Design method Data processing Calculation step (m)	DTU 13.2 From pressuremeter results	
Regulatory framework Design method Data processing Calculation step (m) - Pile geometry-	General settings	Calculation context Regulatory framework Design method Data processing Calculation step (m) Pile geometry	Gene DTU 132 From pressuremeter results Processing by messurements	v v 0.40 ♥
Regulatory framework Design method Data processing Calculation step (m) Plie geometry Calculation section	General settings	Calculation context Regulatory framework Design method Data processing Calculation step (m) Pile geometry Calculation section	Gene DTU 132 From pressuremeter results Processing by messurements	
Regulatory framework Design method Data processing Calculation step (m) Pile geometry Calculation section Calculation section (m ²)	General settings	Calculation context Regulatory framework Design method Data processing Calculation step (m) Pile geometry Calculation section	Gene DTU 132 From pressuremeter results Processing by messurements	v v 0.40 ♥
Regulatory framework Design method Data processing Calculation step (m) - Pile geometry Calculation section Calculation section (m ²) Calculation perimeter (m)	General settings	Calculation context Regulatory framework Design method Deta processing Calculation step (m) Plie geometry Calculation section Calculation diameter (m)	Gene DTU 132 From pressuremeter results Processing by messurements	v v 0.40 ♥
Regulatory framework Design method Data processing Calculation step (m) Pile geometry Calculation section Calculation section (m ²)	General settings	Calculation context Regulatory framework Design method Data processing Calculation step (m) Pile geometry Calculation section Calculation section Calculation diameter (m)	Gene DTU 13.2 From pressuremeter results Processing by measurements Circular section	v v 0.40 ♥
Regulatory framework Design method Data processing Calculation step (m) - Pile geometry Calculation section Calculation section (m ²) Calculation perimeter (m)	General settings	Calculation context Regulatory framework Design method Deta processing Calculation step (m) Plie geometry Calculation section Calculation diameter (m)	Gene DTU 132 From pressuremeter results Processing by messurements	V V 0.40 C
Regulatory framework: Design method Data processing Calculation step (m) Pile geometry Calculation section Calculation section (m ²) Calculation perimeter (m) Veighting system	General settings	Calculation context Regulatory framework Design method Data processing Calculation step (m) Pile geometry Calculation section Calculation section Calculation diameter (m)	Gene DTU 13.2 From pressuremeter results Processing by measurements Circular section	V V 0.40 C
Regulatory framework Design method Data processing Calculation step (m) Plie geometry Calculation section Calculation section Calculation section (m ²) Calculation perimeter (m) Foundation type Implementation mode	General settings	Calculation context Regulatory framework Design method Data processing Calculation step (m) Pile geometry Calculation section Calculation diameter (m) -Weighting system Foundation type	Gene	
Regulatory framework Design method Data processing Calculation step (m) Pile geometry Calculation section Calculation section (m ²) Calculation section (m ²) Calculation perimeter (m) Weighting system Foundation type	General settings	Calculation context Regulatory framework Design method Data processing Calculation step (m) Pile geometry Calculation section Calculation diameter (m) Calculation diameter (m) Foundation type Implementation mode	Gene DTU 132 From pressurementer results Processing by measurements Crocular section File File	
Regulatory framework: Design method Data processing Calculation step (m) Pile geometry Calculation section Calculation section Calculation section (m ²) Calculation perimeter (m) Weighting system Foundation type Implementation mode Load mode	General settings	Calculation context Regulatory framework Design method Data processing Calculation step (m) Pile geometry Calculation section Calculation diameter (m) Calculation diameter (m) Foundation type Implementation mode	Gene	
Regulatory framework Design method Data processing Calculation step (m) Pile geometry Calculation section Calculation section Calculation section (m ²) Calculation perimeter (m) Foundation type Implementation mode	General settings From pressumenter results Processing by messurements 0.40 °	Calculation context Regulatory framework Design method Data processing Calculation step (m) Ple geometry Calculation section Calculation diameter (m) Foundation type Implementation mode Load mode	Gene	
Regulatory framework: Design method Data processing Calculation step (m) Pile geometry Calculation section Calculation section Calculation section (m ²) Calculation perimeter (m) Weighting system Foundation type Implementation mode Load mode	General settings	Calculation context Regulatory framework Design method Data processing Calculation step (m) Pile geometry Calculation section Calculation diameter (m) Veighting system Foundation type Implementation mode Load mode Number of combinations Combined weighting on Q	Gene	▼ ▼ 0.40 ♀ ● ● 0.80 ♀ ▼ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
Regulatory framework: Design method Data processing Calculation step (m) Pile geometry Calculation section Calculation section (m ²) Calculation section (m ²) Calculation perimeter (m) Vagihting system Foundation type Implementation mode Load mode Number of combinations	General settings DTU 13.2 From pressuremeter results Processing by measurements 0.40 \$\rightarrow\$ 0.40 \$\rightarrow\$ 0.40 \$\rightarrow\$ 0.000 \$\rightarrow\$ 0.000 \$\rightarrow\$ Ple \$\text{Wth displacement} \$\text{Compression strength} 2	Calculation context Regulatory framework Design method Data processing Calculation step (m) Pile geometry Calculation section Calculation diameter (m) -Weighting system Foundation type Implementation mode Load mode Number of combinations	Gene	v v 0.40 ℃ 0.80 ℃
Regulatory framework. Design method Data processing Calculation step (m) Pile geometry- Calculation section Calculation section (m ²) Calculation section (m ²) Calculation perimeter (m) Weighting system Foundation type Implementation mode Load mode Number of combinations Combined weighting on Og	General settings DTU 13.2 V From pressuremeter results V Processing by measurements V 0.40 C V 0.50 C U.S 0.50 C U.S	Calculation context Regulatory framework Design method Data processing Calculation step (m) Pile geometry Calculation section Calculation diameter (m) Veighting system Foundation type Implementation mode Load mode Number of combinations Combined weighting on Q	Gene	ULS 0.75
Regulatory framework. Design method Data processing Calculation step (m) Pile geometry Calculation section Calculation section (m ²) Calculation section (m ²) Calculation perimeter (m) Weighting system Foundation type Implementation mode Load mode Number of combinations Combined weighting on Og	General settings DTU 13.2 V From pressuremeter results V Processing by measurements V 0.40 C V 0.50 C U.S 0.50 C U.S	Calculation context Regulatory framework Design method Data processing Calculation step (m) Pile geometry Calculation section Calculation diameter (m) Veighting system Foundation type Implementation mode Load mode Number of combinations Combined weighting on Q	Gene	ULS 0.75
Regulatory framework. Design method Data processing Calculation step (m) Pile geometry Calculation section Calculation section (m ²) Calculation section (m ²) Calculation perimeter (m) Weighting system Foundation type Implementation mode Load mode Number of combinations Combined weighting on Og	General settings DTU 13.2 V From pressuremeter results V Processing by measurements V 0.40 C V 0.50 C V.5 0.50 C V.5	Calculation context Regulatory framework Design method Data processing Calculation step (m) Pile geometry Calculation section Calculation diameter (m) Veighting system Foundation type Implementation mode Load mode Number of combinations Combined weighting on Q	Gene	▼ ▼ 0.40 ♀ ● ● 0.80 ♀ ▼ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Figure K.6 : "Parameters" tab – Examples of input zones

K.3.2.1. "Calculation context" frame

K.3.2.1.1. Data to be defined in this frame

This frame is used to define

- the regulatory framework. The possible choices are:
 - EC7 Standard NF.P 94-262 (default choice proposed);
 - Fascicle 62;
 - o DTU 13.2;
 - o "Free" calculation.
- the design method. The possible choices are:
 - o from pressuremeter results (default choice proposed);
 - o from penetrometer results.
- the data processing:
 - o by layers (default choice proposed);
 - o by measurements.
- the calculation step (m): the default value proposed is equal to 0.5 m.

K.3.2.1.2. Data processing by layers / measurements

Processing by layers enables a single average limit pressure value to be input per layer. This processing is suited to the case of a geotechnical model pre-defined by the user. In this case, the limit pressure value is considered to be uniform over the height of the layer (see example below / illustration of the case of a calculation step of 1 m).

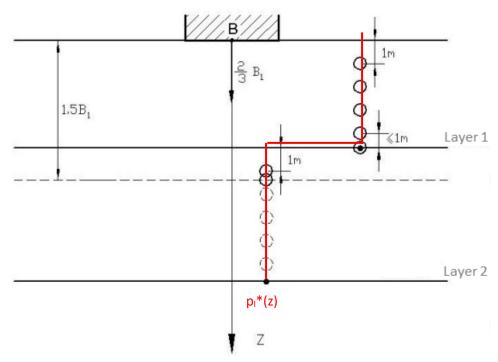


Figure K.7 : Principle of data processing by layers

In the case of processing by measurements, the limit pressure is obtained by interpolation between each measurement input. This method is suitable when regular and sufficiently close measurements are available to enable a realistic curve versus depth to be obtained (measurements every metre for example).

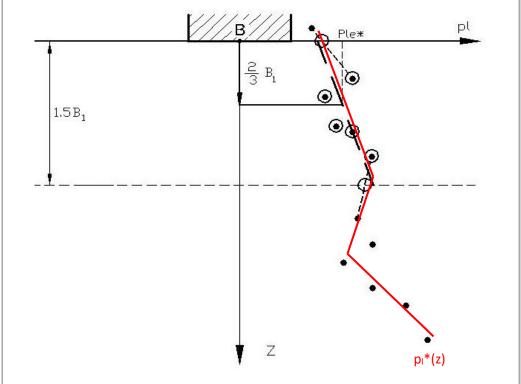


Figure K.8 : Principle of data processing by measurements

Processing by measurements should not be used simply by entering an average value per layer: the limit pressure values are then interpolated between only two measurements over the height of the layer and the profile obtained is not realistic.

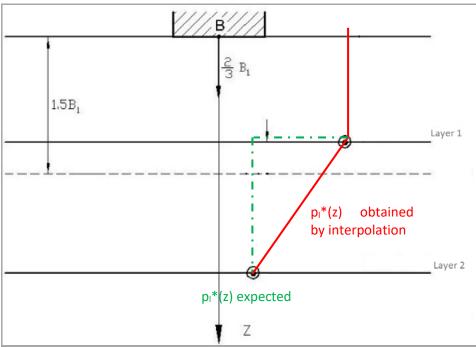


Figure K.9 : Prohibited use of processing by measurements in the case of average values per layer

K.3.2.2. "Pile geometry" frame

This frame is used to define the type of calculation section: irregular or circular.

Depending on the choice, the following data to be input vary:

Type of calculation section	Calculation section (m²)	Calculation perimeter (m)	Calculation diameter (m)
Irregular	Yes	Yes	No
Circular	No	No	Yes

Figure K.10 : Pile geometry: data to be input

A help diagram is available: click the 2 button, only if EC7 was selected in the "Regulatory framework" field of the "Calculation context" frame:

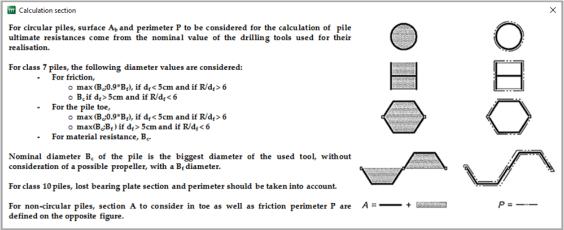


Figure K.11 : Help diagram: Calculation section

K.3.2.3. "Weighting system" frame

The display in this frame varies according to the regulatory framework selected.

K.3.2.3.1. EC7 Regulatory framework – Standard NF.P 94-262

The following fields are displayed:

- the pile class (the various possible choices are listed in the table below);
- the pile category (the various possible choices are listed in the table below);
- the loading mode. The possible choices are "Compression strength" (proposed by default) and "Tensile strength".

Two contextual tick boxes appear:

- Embedded in chalk (unticked by default): this is a "global" choice which affects all the weighting coefficients (see technical notice, Table K.8 and Table K.9);
- very long pile (unticked by default): this concerns the class 1 piles longer than 25 m. When this box is ticked, Fondprof automatically applies a 50% reduction on the friction of the sections situated more than 25 m <u>above</u> the base.

The display conditions for these 2 tick boxes are as follows:

Pile class	Pile category	Embedded in chalk	Very long pile
	1 - [FS] – Bored pile (no support)	Yes	Yes
	2 - [FB] – Bored pile with slurry	Yes	Yes
	3 - [FTP] – Bored pile (permanent casing)	Yes	No
1 – Drilled pile/micro-pile	4 - [FTR] – Bored pile (recoverable casing)	Yes	No
	5 - [FSR, FBR, PU] – Simple bored or sludge drilled with slotting or well	Yes	Yes
	17 - [M1] – Micropile I (gravity pressure)	No	No
	18 - [M2] – Micropile II (low pressure)	No	No
2 – Hollow flight auger pile	6 - [FTC, FTCD] – FA pile	Yes	No
	7 - [VM] – Screw cast in place pile	Yes	No
3 – Screw pile	8 - [VT] – Screw piles with casing	Yes	No
	9 - [BPF, BPR] – Closed-ended driven pile : pre-cast or pre-stressed / concrete	Yes	No
4 – Driven close- ended pile	10 - [BE] – Closed-ended driven piles : coated driven Steel Pile (coating: concrete, mortar, grout)	No	No
	11 - [BM] – Closed-ended driven piles : driven cast-in-place Pile	Yes	No
	12 - [BAF] – Closed-ended driven piles : driven steel pile, closed-ended	Yes	No
5 – Open-ended driven pile	13 - [BAO] – Driven steel pile, open- ended	Yes	No
6 H costion	14 - [HB] – Driven H piles	Yes	No
6 – H-section	15 - [HBi] – Driven grouted H Pile	No	No
7 - Sheet piles beaten	16 - [PP] – Driven sheet pile walls	Yes	No
8 – Grouted	19 - [PIGU, MIGU] – Micropile III (high pressure)	No	No
pile/micro-pile	20 - [PIRS, MIRS] – Micropile IV (high pressure with TAM) ble K.10 : Fields of the "Weighting system" frame: o	No	No

Table K.10 : Fields of the "Weighting system" frame: display conditions

A table then displays the combined weightings on Q_s and Q_p for the 4 load combinations: SLS-QP, SLS-CARAC, ULS-FOND and ULS-ACC. The values of these combined weightings are updated at each change in the above data.

A help diagram is available: click the "Weighting details" button **1** to the right of the table.

This displays the values of the various coefficients defined by standard NF.P 94-262 according to the pile class, its category, its embedment in chalk or otherwise and the loading mode.

	Coefficient	Value
	β _p ELS	0,50
	β _s ELS	0,70
LS / combined weighting on $Q_s = \beta_s / (\gamma_{R:d1}^* \gamma_{R:d2}^* \gamma_{cr})$	Y _{R;d1}	1,15
LS / combined weighting on $Q_s = 1 / (\gamma_{R:d1}^* \gamma_{R:d2}^* \gamma_t)$	Y _{R;d2}	1,10
	Y _{cr} ELS _{qp}	1,10
LS / combined weighting on $Q_p = \beta_p / (\gamma_{R;d1} * \gamma_{R;d2} * \gamma_{cr})$	γ _{cr} ELS _{cara}	0,90
LS / combined weighting on $Q_p = 1 / (\gamma_{R;d1} \gamma_{R;d2} \gamma_t)$	Yt ELU fond	1,10
	Y _t ELU _{acc}	1,00

Figure K.12 : EC7 – Standard NF.P 94-262: Weighting details

K.3.2.3.2. Other calculation frames

Fondprof displays the following, which may or may not be shaded:

- foundation type: pile or micro-pile (the "micro-pile" choice is only available in the case of Fascicle 62);
- implementation mode: the pile's ability to laterally displace or not the soil (this choice is only actually available in the case of Fascicle 62);
- load mode: tensile or compression strength (this choice is only actually available in the case of Fascicle 62 and DTU 13.2);
- number of combinations: only modifiable in the case of a "free" calculation. In the case of Fascicle 62, the number of combinations is set at 5 and it is equal to 2 for DTU 13.2.

Fondprof displays the combined weightings on Q_s and on Q_p in a table at the bottom of this frame. The number and title of the columns which are displayed vary according to the regulatory framework chosen and the corresponding combinations.

Display conditions:

	Creep	SLS QP	SLS- RARE	ULS- FOND	ULS- ACC	SLS	ULS	Coeff i
Fascicle 62	Yes	Yes	Yes	Yes	Yes	No	No	No
DTU 13.2	No	No	No	No	No	Yes	Yes	No
Free calculation	No	No	No	No	No	No	No	Yes

Table K.11 : Combined weightings $Q_s - Q_p$

K.3.3. "Layers" tab

This second tab is used to define the parameters concerning the behaviour of the soil. The number and type of columns vary according to the regulatory framework and the calculation method input into the "Parameters" tab.

N ⁰ Name Colour 1 Sit embankment Inte 2 Sands and gravels San 3 Mudstone Clay	erence elevation (m)	0,00 C	P ₁ * 800,00 2000,00 900,00 2200,00	q _{si} 58,75 90,00 51,09 146,20	k _{pmax} 1,10 1,10 1,15 1,45
Sit embankment Intelligit 2 Sands and gravels Sands 3 Mudstone Clay	Intermediate soils, mainly sandy Sands, gravels Clays, silts	-7,00 -12,00 -20,00	800,00 2000,00 900,00	58,75 90,00 51,09	1,10 1,10 1,15
2 Sands and gravels San 3 Mudstone Clay	Sands, gravels Clays, silts	-12,00 -20,00	2000,00 900,00	90,00 51,09	1,10 1,15
3 Mudstone Clay	Clays, silts	-20,00	900,00	51,09	1,15
4 juan Mar	Maris and mariy linestones	-25,00	2200,00	146,20	1,45
Auto	Databa	nase	•		

Figure K.13 : "Layers" tab – Examples of input tables

K.3.3.1. "Soil layers definition" frame

First of all, one must define the reference elevation, in metres: the default value proposed is 0.0 m.

The proposed table must then be filled out.

The following table describes the soil parameters to be defined for each layer:

Name	Unit	Default value	Display condition	Mandatory value	Local checks
Name of the layer	-	"Layer i"	Always	Yes	-
Colour of the layer	-	Default colour	Always	Yes	-
Soil class	-	"Clay, Silts"	EC7 only (see following table)	Yes	-
Z _{base} : elevation of base of layer	m	1 m below elev. of base of layer above	Always	Yes	Strictly descending values
P I*: Net limit pressure of layer	kPa	0,0	"From pressuremeter results"	Yes	≠ 0
q₅ı: Unit limit shaft friction in the layer	kPa	1,0	Always	Yes	≠ 0

Name	Unit	Default value	Display condition	Mandatory value	Local checks
k _{pmax} : Pressuremeter maximum bearing factor	-	1,0	EC7 + "From pressuremeter results"	Yes	> 0
q _c : Base resistance from penetrometer	kPa	0,0	"From penetrometer results"	Yes	≠ 0
k_{cmin}: Penetrometer minimum bearing factor	-	-	EC7 + "From penetrometer results"	Yes	> 0
k _{cmax} : Penetrometer maximum bearing factor	-	-	EC7 + "From penetrometer results"	Yes	> 0
ρ _s : Shaft friction reduction coefficient	-	1,0	All except EC7	Yes	> 0
k _p : Pressuremeter bearing factor	-	1,0	All except EC7 and "From pressuremeter results"	Yes	> 0
k ₅: Penetrometer bearing factor	-	1,0	All except EC7 and "From penetrometer results"	Yes	> 0
ρ _p : Base resistance reduction coefficient	-	1,0	All except EC7	Yes	> 0

Table K.12 : Soil layers data

In the regulatory frameworks other than EC7, the ρ_p and ρ_s reduction coefficients can be used to take account of varied geometries (H-sections, sheet piles, etc.).

In the case of regulatory framework EC7, the soil classes display conditions are as follows (distinction on the "intermediate" soils):

Soil class	From pressuremeter results	From penetrometer results
Clays Silts	Yes	Yes
Intermediate soils	No	Yes
Intermediate soils, mainly clayey	Yes	No
Intermediate soils, mainly sandy	Yes	No
Sands, gravels	Yes	Yes
Chalk	Yes	Yes
Marl and marly limestone	Yes	Yes
Weathered and fragmented rock	Yes	Yes

Table K.13 : Soil classes display conditions (regulatory framework EC7)

K.3.3.2. Help diagrams and wizards

K.3.3.2.1. Wizards for EC7 projects

From pressuremeter results:

The values of q_{sl} and k_{pmax} can be input manually or determined using the corresponding wizards, accessible at the bottom of the "soil layers definition" frame.

O Paramo	ers O Layers	O Calculati	511				
					Lay	ers o	lata
Soil layers	definition						
		Re	ference elevation (m)	0,00 🗘			
N°	Name	Colour	Soll class	Zbase	pj*	q _{al}	k _{pmax}
1	Silt embankment		Intermediate soils, mainly sandy	-7,00	800,00	58,75	1,10
2	Sands and gravel	s	Sands, gravels	-12,00	2000,00	90,00	1,10
3	Mudstone		Clays, sits	-20,00	900,00	51,09	1,15
4	Mari		Maris and marly limestones	-25,00	2200,00	146,20	1,45
				_			
	¶ 🙀 🤇	Auto	Databa	se	• 1	e	
			Calculation				
			Start calculation	results			

Figure K.14 : "Layers" tab - EC7 wizards

Limit unit shaft friction qsi:

Select the soil layer concerned, then click the 🛐 button to open the wizard.

100												×
180						1					ller	
			-		-							
140												
120												
(ed) 100 80	/											
) Isb 80	()											
00												
40												
20												
0	600 1 000 1 600	2 000	2 500	3 000	3 600	4 000	4 500	5 000	6 600	6 000	6 600	70
Data				P	l* (l:Pa)			- Results				
Sol class	Marks and marky imesto		v	p,* (kPa) [2000	- Kesuts -		Q4)=144 KPV	d.	
									0	Send)		
Pile category	Category 2 [FB] Studge	drilled (piles and	s batten plate				Y					
Details a _{pieu-sol} = 1.5	a = 0.008							· · · ·				
'pieu-sol " 1.1	b = 0.00											
	c = 3.0											
Information												

Figure K.15 : Wizard q_{sl} – EC7 – From pressuremeter results

➤ "Data" frame

The wizard uses the data previously input for the layer selected (soil type, value of p_1^*) as well as the pile category chosen. If the layer data have not yet been filled out, it is possible to input them into the wizard.

> "Details" frame

The $\alpha_{\text{pile-soil}}$ parameter and the values of a, b and c are automatically calculated according to the data input into the "Data" frame and are displayed here.

"Information" frame

As applicable, additional information needed to determine q_{sl} are detailed.

> Graph

The graph shows the q_{sl} versus p_l^* curve. The red curve shows the value of q_{sl} obtained for the input value of p_l^* .

"Results" frame

When the parameters proposed are appropriate, clicking the <u>Send</u> button enables the q_{sl} value to be sent to the layers definition table for the soil layer selected.

Click the Close button and repeat the operation for each soil layer.

Pressuremeter bearing factor kpmax:

Select a soil layer then click the **W** button to open the wizard.

📷 kpmax wizard	×
Pile class : 1 - Bored pile/micropile v Intermediate soils, mainly sandy v k _{pmax} = 1.1 Send	
└ Information	
Please refer to the wizard in the "Parameters" tab or to the article A.10 of I/F P 94-262 standard to choose the areas and perimeters of piles to be considered in calculations.	the
For micropiles, the toe term is conventionally not taken into account.	
Close	

Figure K.16 : Wizard kpmax – EC7

The wizard uses the chosen pile class and the soil type of the selected layer if already input, otherwise it needs to be input.

As applicable, additional information necessary for determining q_{sl} is detailed.

The value of k_{pmax} is then calculated. Clicking the <u>Send</u> button sends this value to the layers definition table, for the selected soil layer.

Click the Close button and repeat the operation for each soil layer.

Automatic wizard for qsl and kpmax

Clicking the \frown button automatically calculates the values of q_{sl} and k_{pmax} for all the soil layers.

A summary screen shows information concerning the various automatic calculations:

Summary X
Silt embankment :
- For very long piles, 50% reduction on the used shaft friction value should be applied during calculations on pile sections located more than 25m away from the toe.
- For micropiles, the toe term is conventionally not taken into account.
- Please refer to the wizard in the "Parameters" tab or to the article A.10 of NF P 94-262 standard to choose the areas and perimeters of piles to be considered in the calculations.
Sands and gravels : See Silt embankment
Mudstone : See Silt embankment
Mari :
- For very long piles, 50% reduction on the used shaft friction value should be applied during calculations on pile sections located more than 25m away from the toe.
- For micropiles, the toe term is conventionally not taken into account.
- Please refer to the wizard in the "Parameters" tab or to the article A.10 of INF P 94-262 standard to choose the areas and perimeters of piles to be considered in the calculations.
- The kp value for weathered and fragmented rocks should be taken equal to the table value of the most closely related loose soil. In the case of good rock, it should be assessed whether a justification based on these methods and obviously pessimistic is sufficient, or whether specific methods of rock mechanics should be used.
Close

Figure K.17 : Automatic wizard qsl and kpmax – EC7 – From pressuremeter results

From penetrometer results:

The values of q_{sl} , k_{cmin} and k_{cmax} can be input manually or determined form the corresponding wizards, accessible at the bottom of the "soil layers definition" frame.

Limit unit shaft friction qsl:

Select the soil layer concerned then click the 🛐 button to open the wizard.

ssistent qsl		-
(ed.)) top		
10 0 2 600 Données Classe de sol Catégorie du pieu	0 5 000 7 500 10 000 12 500 15 000 17 500 20 000 22 500 25 000 27 500 30 000 32 500 36 000 1	37 60
Détails 'pieu-sol = 0.55	a-0.0018 b=0.1 c=0.4	
périmètre.	reporter à la figure d'aide de l'onglet "Paramètres" ou à l'article A.10 de la norme RF.P 94.362 pour le calcul du type RAO, HS et PP, mis en oeuvre par vibrolonçage, et pas par battage, il y a lieu de faire un abattement de 30% 94.	iphiq

Figure K.18 : Wizard q_{sl} – EC7 – Form penetrometer results

This wizard works exactly as that described above and, based on pressuremeter results.

Bearing capacity coefficients kcmin and kcmax

Select a soil layer then click the 🙀 button to open the wizard.

	Pile class : 6 -	H-sections	~	Sands, gravels	~	
		k _{emin} = 0.1	k _{cmax} = 0.4	Send		
_ Infor	mation					_
				tab or to the arti		
		hoose the are	eas and perim	eters of piles to	be considered in the	е
cal	ulations.					
For	BAO, HB and PP	pile types, im	plemented by	vibro-driven ins	tead of hammering,	
	BAO, HB and PP reduction on th				tead of hammering,	
					tead of hammering,	
					tead of hammering,	
					tead of hammering,	
					tead of hammering,	
					tead of hammering,	
					tead of hammering,	
					tead of hammering,	
					tead of hammering,	
					tead of hammering,	

Figure K.19: Wizard for kcmin and kcmax

This wizard works exactly as that described above for determining k_{pmax} in the case of a design based on pressuremeter results, except that this time, the wizard proposes 2 values: k_{cmin} and k_{cmax} .

Automatic wizard for q_s, k_{cmin} and k_{cmax}:

Similarly to design based on pressuremeter results, clicking the \bigcirc Auto button allows automatic calculation of the values of q_{sl} , k_{cmin} and k_{cmax} for all the soil layers.

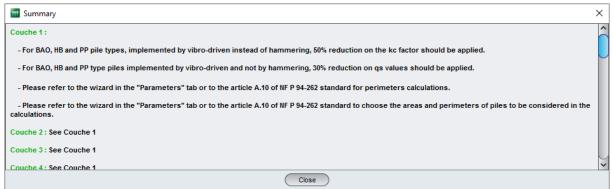


Figure K.20 : Automatic wizard for qs, kcmin and kcmax – EC7 – Based on penetrometer results

K.3.3.2.2. Wizards for "Fascicle 62" projects, from pressuremeter results

The values of q_s and k_p can be input manually or determined from corresponding wizards, accessible at the bottom of the "soil layers definition" frame.

Limit unit shaft friction qs:

Select the soil layer concerned then click the 🛐 button to open the wizard.

"Data" frame

The wizard uses the value of p_i^* previously input for the selected layer. The soil type and pile type should then be specified in the wizard.

"Information" frame

As applicable, additional information necessary for determining q_s is detailed.

Figure K.21 : Wizard qs (Fascicle 62) for a "Firm clay and silt" soil

Graph

The graph presents the q_s versus p_l^* curve(s). The red line makes it possible to read the value of q_s obtained for the input value of p_l^* .

"Results" frame

Select the appropriate value when several curves are available. When the parameters proposed are acceptable, clicking the $\$ send $\$ button enables the value of q_s to be sent to the layers definition table for the soil layer selected.

Click the Close button and repeat the operation for each soil layer.

Bearing factor kp:

Select a soil layer then click the 🙀 button to open the wizard.

📅 kp wizard		×
Clay and silt / A - Soft clay or silt (p,<700 kPa)		~
Pile with displacement, kp =	1.4	
□ Information		<u></u>
	Close	\supset

Figure K.22 : Wizard kp (Fascicle 62) for a "soft clay or silt" type soil

Here, one must select the soil class to which the soil layer concerned belongs, using the drop-down list.

The wizard automatically uses the implemented mode defined in the "Parameters" tab.

In the case of soils of class 'Rocks /A – Weathered (p_l not defined)' and only in this case, the wizard can be used to modify the value of k_p .

Additional information is displayed according to the soil class selected in the "Information" frame.

Click the **button** to send the value to the selected line.

Click the Close button and repeat the operation for each soil layer.

K.3.3.2.3. Help diagrams in the Fascicle 62 regulatory framework

The following help diagrams are accessible for projects for which the calculation context is covered by the regulatory framework of **Fascicle 62**.

Conventional classification of soils:

This help diagram is accessible whatever the design method chosen (from pressuremeter results or from penetrometer results).

📅 Soil classification			×					
Conventional soil classification								
	Soil class	Pressuremeter p_i (MPa)	Penetrometer q_c (MPa)					
	A – Loose clays and silts	< 0,7	< 3,0					
Clays , silts	B – Firm clays and silts	1,2 à 2,0	3,0 à 6,0					
	C – Very firm to stiff clays	> 2,5	> 6,0					
	A – Loose	< 0,5	< 5					
Sands, gravels	B – Moderately compact	1,0 à 2,0	8,0 à 15,0					
	C – Compact	> 2,5	> 20,0					
	A – Loose	< 0,7	< 5,0					
Chalks	B – Weathered	1,0 à 2,5	> 5,0					
	C – Compact	> 3,0						
Marls, marly	A – Soft	1,5 à 4,0						
limestones	B – Compact	> 4,5						
Rocks	A – Weathered	2,5 à 4,0						
NUCKS	B – Fragmented	> 4,5						

Figure K.23 : Help diagram: Conventional soil classification

The following help diagrams are accessible for projects designed from pressuremeter results only.

Bearing factor values kp:

	Soil class	Implementation without displacement	Implementation with displacement
	A – Loose clays and silts	1.1	1.4
Clays, silts	B – Firm clays and silts	1.2	1.5
	C – Very firm to stiff clays	1.3	1.6
	A – Loose	1.0	4.2
Sands, gravels	B – Moderately compact	1.1	3.7
	C – Compacts	1.2	3.2
	A – Loose	1.1	1.6
Chalks	B – Weathered	1.4	2.2
	C – Compact	1.8	2.6
Marls, marly	A – Soft	1.8	2.6
limestones	B – Compact	1.8	2.6
Rocks (1)	Weathered (1)	1.1 à 1.8	1.8 à 3.2

Figure K.24 : Help diagram: Bearing factor values kp

Friction qs:

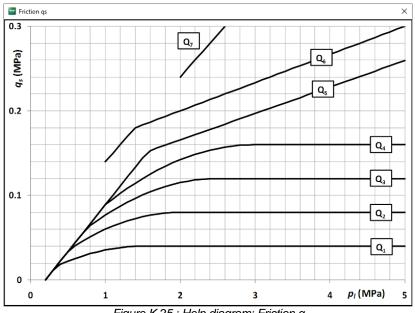


Figure K.25 : Help diagram: Friction qs

Help with classification of piles:

The following table helps with the choice of curves for calculating the unit shaft friction qs (main types of piles used in engineering structures).

D'Is turns	Clays, silts		Sands, gravels			Chalks			Marls		Rocks	
Pile type	Α	A B C		Α	В	с	A	В	с	A	В	
Simple bored	Q ₁	Q ₁ , Q ₂ (1)	Q ₂ , Q ₃ (1)		-		Q ₁	Q ₃	Q ₄ , Q ₅ (1)	Q3	Q ₄ , Q ₅ (1)	Q ₆
Sludge drilled	Q ₁	Q ₁ , 0	Q ₂ (1)	Q ₁	Q ₂ , Q ₁ (2)	Q ₃ , Q ₂ (2)	Q ₁	Q ₃	Q ₄ , Q ₅ (1)	Q3	Q ₄ , Q ₅ (1)	Q ₆
Drilled cased (reclaimed tube)	Q ₁	Q ₁ , 0	Q ₂ (3)	Q ₁ Q ₂ , Q ₁ (2) Q		Q ₃ , Q ₂ (2)	Q ₁	Q2	Q ₃ , Q ₄ (3)	Q3	Q4	_
Drilled cased (lost tube)		Q ₁		Q ₁ Q ₂			(4)		Q2	Q3	-	
Well (5)	Q ₁	Q ₂	Q3	_			Q ₁	Q ₂	Q3	Q4	Q ₅	Q ₆
Steel close-ended driven	Q ₁	c	Q2	Q₂		Q3		(4)		Q3	Q4	Q4
Prefabricated concrete driven	Q ₁	с	Q ₂	Q ₃		(4)		Q3	Q4	Q4		
Driven Cast in situ	Q ₁	c	Q ₂		Q ₂	Q ₃	Q_1	Q2	Q3	Q3	Q4	-
Coated driven	Q ₁	c	Q ₂		Q ₃	Q4		(4	4)	Q3	Q4	-
Low pressure injected	Q ₁	c	l ₂		Q ₃		Q ₂	Q ₃	Q4		Q5	-
High pressure injected (6)	-	Q4	Qs		Q ₅	Q ₆		Q ₅	Q ₆		Q ₆	Q ₇ (7)
 Reboring and slotting at th Very long pile (longer than Dry drilling, non-oscillated If chalk: shaft friction can b Neither cased nor hammer Selective and repetitive inj Selective and repetitive inj 	30 m). casing t e very ed with ection a	tube. weak for some h lost ferrule (s at low flow.	ometimes rou	gh).				cavity	filling.			

Figure K.26 : Help diagram: Pile classification

Finally, the following help diagram is accessible for projects designed from penetrometer results only.

Bearing factor kc:

Bearing factor kc X						
« k_c » bearing	factor values					
	Soil class	Implementation without displacement	Implementation with displacement			
	A – Loose clays and silts					
Clays , silts	B – Firm clays and silts	0.40	0.55			
	C – Very firm to stiff clays					
	A – Loose					
Sands, gravels	B – Moderately compact	0.15	0.50			
	C – Compact					
Chalks	A – Loose	0.20	0.30			
Cliaiks	B – Weathered	0.30	0.45			

Figure K.27 : Help diagram: Bearing factor values kc

K.3.3.3. Data import

The Fondprof module can be used to import soil layer data from the Windows[®] clipboard (also see example 2 in chapter K.4.2).

K.3.3.3.1. Data import procedure

These soil "layer" data are imported in the following way:

- > prepare/recover an Excel[®] spreadsheet comprising the data to be imported;
- > open this spreadsheet and copy the data into the Windows[®] clipboard
- open the "Table Modification" wizard " subscripts and click the ______ button;

<u>Tip:</u> If you are working in the EC7 regulatory framework – Standard NF.P94-262: before clicking the <u>Import...</u> button, create the first soil layer 'Layer 1' by clicking the **•** button, then select the required soil class. This soil class will then be automatically input into the imported lines;

in this wizard, specify the lines interval to be imported. If the first line on the spreadsheet comprises column headers, it should be ignored (and import should therefore begin on line 2).

poard contents		
Column 1	Column 2	
	0	
	-0,5	246
	-1	360
	-1,5	450
	-2	527
	-2,5	596
	-3	628
	-3,5	659
	-4	689
	-4,5	717
	-5	74
	-5,5	77.
	-6	79
	-6,5	82
	-7	84
	-7,5	87
	-8	89
	-8,5	92
	-9	94
	-9,5	96
50	✓ P ₁ *	
ons		
(Only the black-font cells will be imported	
First ro	w to import Row 1 🗸 Last row to import Row 47 🗸	
Number of rows to import into the table : 47	Number of columns to import into the table : 2 Number of rows to create	a in the table : 42

Figure K.28 : Data import wizard

- click the Import... button;
 - the table modification wizard then displays the imported data. Click the Close button: the imported soil layers were created with a default name, the soil class (copied from the first line if EC7 regulatory framework) and the values of the parameters as filled out in the spreadsheet.

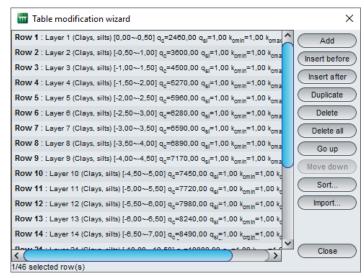


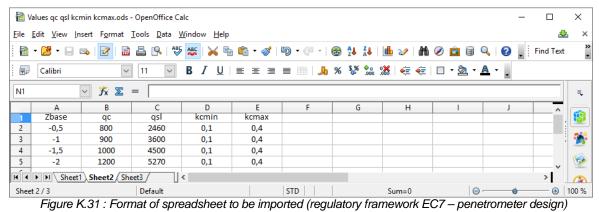
Figure K.29 : Table modification wizard

K.3.3.3.2. Format of spreadsheets to be imported

Below are examples of spreadsheet formats to be used.

For each of the cases mentioned below, the screenshot illustrates the data specific to Fondprof according to the regulatory framework and the design method, in accordance with the order shown in the application's Layers tab.

Note: Not all the data columns have to be filled out (but the Z_{base} data however is mandatory).


EC7 regulatory framework - Pressuremeter design method:

Imported data: Zbase, pl*, qsl and kpmax.

₩ V	alues pl qsl kpr	nax.ods - Open(Office Calc							-	- 🗆	×
Eile	<u>E</u> dit <u>V</u> iew <u>I</u> n	sert F <u>o</u> rmat	<u>T</u> ools <u>D</u> ata <u>\</u>	<u>N</u> indow <u>H</u> elp							4	<u>k</u> >
1	- 🔰 - 🔛	🌫 🛃 🔒	🖴 🔍 🍣	🏂 🔀 🖻	i 🛍 🔹 🚿	9 - (2 -	🗟 🛃 🖁	바 🅢 🖁	🧭 💼 🗟 (30	Find Text	
Ŷſ	Calibri	~	11 ~	B <i>I</i> <u>U</u>	E	= = 🔒	% \$%	🇱 ∉ ∉	- 🖄 -	<u>A</u>		
01		∽ <i>∱</i> x ∑	=									₹.
	А	В	С	D	E	F	G	н		J	^	
1	Zbase	PI*	qsl	kpmax								. 😰
2	-0,5	800	2460	1,5								
3	-1	900	3600	1,5								1
4	-1,5	1000	4500	1,5								
	-2	1200	5270	1,5								Ø
5		Sheet2 She	eet3 /	<				1	1		>	0
_	I Sheet	, Valleere Valle										

EC7 regulatory framework - Penetrometer design method:

Imported data: Z_{base} , q_c , q_{sl} , k_{cmin} and k_{cmax} .

Other regulatory frameworks – Pressuremeter design method:

Imported data: Z_{base} , q_{sl} , ρ_{s} , p_{l^*} , k_{p} and ρ_{p} .

诸 Va	alues qsl ps p	ol kp pp.ods - Ope	nOffice Calc								- 0	Х
<u>F</u> ile <u>I</u>	<u>E</u> dit <u>V</u> iew	<u>I</u> nsert F <u>o</u> rmat	<u>T</u> ools <u>D</u> ata <u>\</u>	<u>N</u> indow <u>H</u> elp							2	<u>×</u>
1	• 볼 • 🔒	🗠 📝 🔒	昌 🕓 I 🗳	ABC 🔀 🖣	h 🛍 • 🛷	9 · C ·	🚭 🛃 👗	1 и 🥻	Ø 💼 🗟	۹ 🕐	Find Text	>> •
Ŷŗ	Calibri	~	11 ~	B <i>I</i> <u>∪</u>	EEE	= III J	% 🐉 號	🎎 ∉ 🤕	- 🖄 -	<u>A</u>		
L1		∽ <u>7</u> × ∑	=									₹.
	А	В	С	D	E	F	G	н	1	J	^	
1	Zbase	qsl	ρs	pl*	kp	ρρ						
2	-0,5	2460	1	800	1	1						
3	-1	3600	1	900	1	1						1
4	-1,5	4500	1	1200	1	1						
5	-2	5270	1	1500	1	1						6
I	▶ ► Shee	et1 Sheet2 She	eet3 /	<	Ì						>	
Sheet	2/3		Default			STD *		Sum=0	Θ			100 %
			F	iauro K 3	2 · Forma	t of spread	shoot to	he importe	d			

Figure K.32 : Format of spreadsheet to be imported (other regulatory frameworks – pressuremeter design)

Other regulatory frameworks - Penetrometer design method:

Imported data: Zbase, qsl, ps, qc, kc and pp.

	alues dsl bs dc	kc pp.ods - Ope	enOffice Calc							_	- 🗆	×
<u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>I</u> n	sert F <u>o</u> rmat	<u>T</u> ools <u>D</u> ata <u>\</u>	<u>V</u> indow <u>H</u> elp							2	<u> </u>
1	- 😕 - 🔛	🗠 🕑 🔒	🖴 🖳 🍣	ar 🖌 🛱	a 🛍 • 🚿	9 - C' -	🛃 🕺 🔏	止 🅢 🕯) 🧭 💼 🗟 (λΙΟ.	Find Text	
9	Calibri	~	11 ~	B <i>I</i> <u>U</u>	EEE	=	% \$% ***	😹 ∉ 🤕	- 💆 -	<u>A</u>		
N1		∽ <i>∱</i> x ∑	=									₹.
	А	В	С	D	E	F	G	Н	1	J	~	
1	Zbase	qsl	ρs	qc	kc	ρρ						
2	-0,5	2460	1	100	1	1						
3	-1	3600	1	250	1	1						1
4	-1,5	4500	1	300	1	1						
5	-2	5270	1	500	1	1					~	6
4	► ►I \ Sheet'	Sheet2 She	eet3	<							>	R
Shee	t 2 / 3		Default			STD *		Sum=0	Θ	0		100 %

(other regulatory frameworks – penetrometer design)

The data checks are the same as those mentioned in Table K.12.

In some cases, if the imported values are outside the acceptable range, Fondprof automatically corrects the values: for example, if values higher than 1 are input in the spreadsheet for the ρ_p and ρ_s coefficients, Fondprof reduces these values to 1.0 after import.

K.3.4. "Calculation" tab

This last tab is used to select a stop criterion for the calculation.

One of the three calculation modes should be chosen.

Imposed load at pile head (default choice proposed):

Parameters	Layers	Calculation		
- Calculation crite	rion		C	alculation
Imposed I	oad at pile he	ad	Load at pile head (kN)	10,00 🗘
			Criterion applied on the combination	Creep 🗸
				Creep SLS - QP
Imposed	tress at pile	head		SLS - RARE
				ULS - FUND ULS - ACC
Imposed I	enoth			
0	angun			
<u> </u>				

Figure K.34 : Calculation criterion: Imposed load at pile head

Imposed stress at pile head:

O Parameters O Layers O Calculation	
	Calculation
Calculation criterion	
◎ Imposed load at pile head	
Imposed stress at pile head Stress at pile head	I (kPa) 10,00 🗘
Criterion applied on the co	mbination Creep V
© Imposed length	SLS - QP SLS - RARE
A whosen suider	ULS - FUND
	ULS - ACC

Figure K.35 : Calculation criterion: Imposed stress at pile head

Imposed length:

♥ Parameters ♥ Layers ♥ Calculation	
	Calculation
Calculation criterion	
Imposed load at pile head	
Imposed stress at pile head	
Imposed length	Pile length (m) 25,00 💭

Figure K.36 : Calculation criterion: Imposed length

The following table describes the data concerning the various calculation criteria:

Name	Unit	Default value	Display condition	Mandatory value	Local checks
Load at pile head	kN	0.00	If "Imposed load at pile head" criterion	Yes	≠ 0
Stress at pile head	kPa	0.00	If "Imposed stress at pile head" criterion	Yes	≠ 0
Criterion applied to the combination	-	First combination of the list associated with the regulatory framework	If "Imposed load at pile head" or "imposed stress at pile head" criterion	Yes	-
Pile length	m	0.00	If "Imposed length" criterion	Yes	> 0

Table K.14 : Calculation criteria

K.3.5. Calculation and results

K.3.5.1. Calculation

The calculation can be started from any tab provided that the tabs are correctly filled out, in other words when they are all marked with a green tick (for example: <a>Cayers).

They are marked with a red cross (example: Layers) until they are correctly filled out (data missing or not conforming to the required values).

To start the calculation, click the **Start** calculation button.

To display the calculation results, click the veresults button.

K.3.5.2. Results

The following window is used to choose the type of results to be displayed. Different types of results are available in the case of the Fondprof module:

- numerical results: formatted results and results tables;
- graphical results: superposed bearing capacity curves.

File Project ?		
⁵ Results	Calculated : 6 minutes ago (Calculation date : Feb 23, 2016 2:55:02 PM)	Back to the data
- Numerical results	Formatid results	
- Graphical results	Superimposed curves for bearing c	
	Figure K.37 : Results window	

K.3.5.2.1. Formatted numerical results

The formatted numerical results contain:

- a reminder of the data: the calculation options, the general parameters and the characteristics of the layers;
- a reminder of the calculation criterion;
- a table giving the following for each calculation step (until the stop criterion is reached):
 - the layer present at every design level;
 - the design level (m);
 - the limit unit shaft friction value q_{sl} (kPa) at this elevation;
 - the equivalent limit pressure ple (kPa) and pressuremeter bearing factor kp values calculated at this elevation in the case of a pressuremeter calculation;
 - the equivalent base resistance q_{ce} (kPa) and penetrometer bearing capacity factor k_c values calculated at this elevation in the case of a penetrometer calculation;
 - \succ the value of the total shaft friction limit load Q_{s} (kN) for a pile ended to this elevation;
 - the value of the limit base load Q_p (kN) for a pile ended to this elevation;
 - > the bearing capacities (kN) for the various load combinations:
 - EC7 case: quasi-permanent SLS, characteristic SLS, permanent and transient ULS (fundamental) and accidental ULS;
 - Fascicle 62 case: Creep, quasi-permanent SLS, rare SLS, permanent and transient ULS (fundamental) and accidental ULS;
 - o DTU 13.2 case: SLS and ULS;
 - o case of a free calculation: Coeff i (one column per combination).

- 12	- 1			1 0.44			. 41			1							
File :	E:\Users\	(mto\Document	s\Foxtav3\f	ondprof\CAPAC	ITE PROTANT	E PIEU ISC	LE\capacit	e protante	pieu isolé[FP].resu							
Calcul r	éalisé le	2: 02/09/	2013 à 18h:	19													
	par																
Options d	u calcul	:															
- cal	cul basé	sur des para	mètres issu	s du pressiom	ètre de Mén	ard											
- pro	fil de pr	n les règles ression limit	e pl° défin	i par points	de mesure												
- pou	r pieu de	e catégorie :	6				couche	cote	qsl	ple	kp	Qs	Qp	ELS-QP	ELS-CARA	ELU-FOND	ELU-ACC
- pou	r pieu tr	availlant en	compression	n					4			~					
Combinai	5005	ELS-OP	ELS-CARA	ELU-FOND	ELU-ACC		01	2.00	75.53	800.0	1.000	0.0	240.0	86.2	105.4	172.6	189.8
							01	1.60	75.53	800.0 800.0	1.084	9.1 18.1	260.2	98.0 109.8	119.8 134.2	193.6 214.6	213.0 236.1
Frotteme Pointe	nt	0.503 0.359	0.615	0.719 0.719	0.791 0.791		01	0.80	75.53	800.0	1.252	27.2	300.6	121.6	148.7	235.7	259.3
ronice		0.555	0.455	0.715	0.751		01 01	0.40	75.53	800.0 800.0	1.337 1.421	36.3 45.3	320.8 341.0	133.4 145.2	163.1	256.7	282.4 305.5
							01	-0.40	75.53	800.0	1.505	54.4	361.2	157.0	192.0	298.8	328.7
							01	-0.80	75.53	800.0 800.0	1.589	63.4 72.5	381.4 396.0	168.8	206.4	319.8 336.9	351.8 370.6
Cote de	référence	2.000					01	-1.60	75.53	800.0	1.650	81.6	396.0	183.2	224.0	343.4	377.8
	du pieu :						01	-2.00	75.53 75.53	800.0 800.0	1.650	90.6 99.7	396.0 396.0	187.8 192.3	229.6 235.2	349.9 356.4	384.9 392.1
Périmètr	e :	0.300					01	-2.80	75.53	800.0	1.650	108.8	396.0	196.9	240.7	362.9	399.3
							01	-3.20	75.53	800.0 800.0	1.650	117.8 126.9	396.0 396.0	201.4 206.0	246.3 251.9	369.4 376.0	406.4 413.6
							01	-4.00	75.53	800.0	1.650	136.0	396.0	210.5	257.5	382.5	420.8
aractéri	stiques d	les couches (données uti	lisateur)			01	-4.40 -4.80	75.53	800.0 800.0	1.650	145.0 154.1	396.0 396.0	215.1 219.7	263.0 268.6	389.0 395.5	427.9 435.1
							01	-5.20	75.53	800.0	1.650	163.1	396.0	224.2	274.2	402.0	442.3
ouche	base	pl*	qsl	kpmin	kpmax		01	-5.60	75.53	800.6 815.0	1.650	172.2	396.3 403.4	228.9	279.9 288.6	408.8	449.7 462.5
01	-7.00	800.0	75.53	1.00	1,65		01	-6.40	75.53	848.6	1.650	190.3	420.1	246.5	301.5	438.9	482.8
01	-12.00	2000.0	130.94	1.00	1.65		01	-6.80	75.53	901.4	1.650	199.4	446.2	260.5	318.5	464.2	510.7 527.4
03	-20.00	900.0	61.31	1.00	1.30		02	-7.00	130.94	980.0	1.650	203.9	485.1	276.7	338.4	495.4	545.0
04	-25.00	2200.0	155.95	1.00	1.60		02	-7.40	130.94	1028.0	1.650	219.6	508.9 550.4	293.2	358.5	523.8	576.2
							02	-8.20	130.94	1208.0	1.650	251.1	598.0	341.0	416.9	610.5	671.6
Pas du c	alcul :	0.40					02	-8.60	130.94	1304.0	1.650	266.8	645.5	365.9	447.4 478.0	655.9 701.4	721.6
							02	-9.40	130.94	1496.0	1.650	298.2	740.5	415.8	508.5	746.8	821.6
							02	-9.80	130.94	1592.0	1.650	313.9	788.0	440.8	539.0 569.5	792.3	871.7
							02	-10.60	130.94	1783.1	1.650	345.3	882.6	490.6	599.9	882.9	971.3
			UTION===				02	-11.00	130.94 130.94	1856.4 1899.6	1.650	361.1	918.9 940.3	511.5 527.1	625.5	920.3 947.0	1012.5
			********				02	-11.80	130.94	1912.5	1.650	392.5	946.7	537.3	657.0	962.9	1059.3
							02	-12.00	130.94 61.31	1907.7 1896.9	1.650	400.3	944.3 739.8	540.4 467.0	660.8 571.0	966.8 819.7	1063.6
Calcu	1 à longu	eur imposée	: L = 25.0	00			03	-12.40	61.31	1869.4	1.300	407.7	729.1	466.8	570.8	817.3	899.2
							03	-12.80	61.31 61.31	1821.2 1766.2	1.300	415.1 422.4	710.3 688.8	463.8 459.8	567.1 562.2	809.1 799.0	890.1 879.0
							03	-13.60	61.31	1711.2	1.300	429.8 437.1	667.4	455.8	557.3 552.4	788.9 778.7	867.9
ouche	cote	qs1	ple	kp	Qs	Qp	03	-14.40	61.31	1656.2	1.300	444.5	624.5	447.8	547.5	768.6	845.6
							03	-14.80	61.31	1546.2 1491.2	1.300	451.8	603.0 581.6	443.8	542.6 537.7	758.5	834.4 823.3
01 01	2.00	75.53 75.53	800.0 800.0	1.000 1.084	0.0	240.0	03	-15.60	61.31	1436.2	1.300	466.6	560.1	435.8	532.8	738.2	812.1
01	1.20	75.53	800.0	1.168	18.1	280.4	03	-16.00	61.31	1381.2	1.300	473.9	538.7 517.2	431.8	527.9 523.0	728.1	801.0
01 01	0.80	75.53	800.0 800.0	1.252	27.2	300.6 320.8	03	-16.80	61.31	1271.2	1.300	488.6	495.8	423.8	518.2	707.8	778.7
01	0.00	75.53	800.0	1.421	45.3	341.0	03	-17.20	61.31	1216.2	1.300	496.0	474.3	419.8	513.3 508.4	697.7	767.5
01	-0.40	75.53	800.0	1.505	54.4 63.4	361.2 381.4	03	-18.00	61.31	1106.3	1.300	510.7	431.4	411.8	503.5	677.4	745.2
01	-1.20	75.53	800.0	1.650	72.5	396.0	03	-18.40	61.31	1051.3	1.300	518.1 525.4	410.0	407.8	498.6	667.3	734.1
							03	-19.20	61.31	989.9	1.300	532.8	386.1	406.6	497.1	660.7	726.8
							03	-19.60	61.31 61.31	1006.5	1.300	540.1 547.5	392.5 411.4	412.6	504.5 517.3	670.6 689.4	737.7
							03	-20.00	61.31	1054.8	1.300	547.5	411.4	423.1	517.3	689.4	758.5
							04	-20.00	155.95	1095.0 1147.0	1.600	547.5	525.6 550.6	464.1 482.4	567.4 589.9	771.5	848.8
							04	-20.80	155.95	1238.0	1.600	566.2 584.9	594.2	507.5	620.6	802.9 847.8	883.4 932.7
							04	-21.20	155.95	1342.0	1.600	603.6	644.2	534.9	654.0 687.4	897.2	987.0
							04	-21.60	155.95	1446.0 1550.0	1.600	622.3 641.1	694.1 744.0	562.2 589.5	720.9	946.5 995.9	1041.3 1095.6
							04	-22.40	155.95	1654.0	1.600	659.8	793.9	616.9	754.3	1045.2	1149.9
							04 04	-22.80	155.95	1758.0 1810.0	1.600	678.5 687.8	843.8 868.8	644.2 657.9	787.7 804.4	1094.6 1119.2	1204.2 1231.3
											FC7			anuarli			

Figure K.38 : Formatted numerical results (case of EC7 regulatory framework)

K.3.5.2.2. Results table

On the whole, this concerns the same results as those detailed for the formatted results in the previous chapter, but this time presented in the form of a table, and without the data summary part.

The values of pl_e/k_p or q_{ce}/k_c are however replaced in the table by the display of the q_{pl} column (base resistance pressure, in kPa).

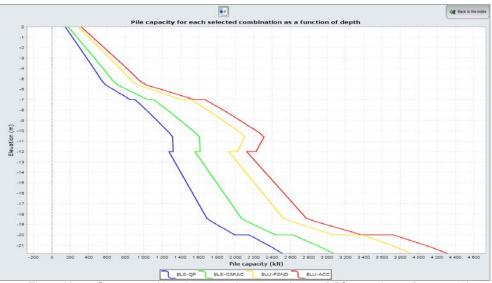
	Project ?								
sults								Export	Back to the
_	z	q _{si}	q _{pl}	QS	QP	Q-ELS-QP	Q-ELS-CARAC	Q-ELU-FOND	Q-ELU-ACC
	0,000	58,75	800,00	0,0	402,1	144,4	176,5	289,1	31
	-0,400	58,75	808,00	59,1	406,1	175,5	214,6	334,5	3(
	-0,800	58,75	816,00	118,1	410,2	206,7	252,7	379,8	4
	-1,200	58,75	824,00	177,2	414,2	237,8	290,8	425,2	4
	-1,600	58,75	832,00	236,2	418,2	269,0	328,9	470,6	5
	-2,000	58,75	840,00	295,3	422,2	300,1	367,0	515,9	56
	-2,400	58,75	848,00	354,4	426,2	331,3	405,1	561,3	6
	-2,800	58,75	856,00	413,4	430,3	362,4	443,1	606,6	6
	-3,200	58,75	864,00	472,5	434,3	393,6	481,2	652,0	7
	-3,600	58,75	872,00	531,6	438,3	424,7	519,3	697,3	7
	-4,000	58,75	880,00	590,6	442,3	455,9	557,4	742,7	8
	-4,400	58,75	880,00	649,7	442,3	485,6	593,7	785,2	8
	-4,800	58,75	880,00	708,7	442,3	515,3	630,1	827,6	9
	-5,200	58,75	880,00	767,8	442,3	545,0	666,4	870,1	9
	-5,600	58,75	946,00	826,9	475,5	586,6	717,3	936,4	10
	-6,000	58,75	1210,00	885,9	608,2	664,0	811,9	1074,3	11
	-6,400	58,75	1468,00	945,0	737,9	740,2	905,1	1210.0	13:
	-6,800	58,75	1716,00	1004,1	862,6	814,7	996,1	1342,1	14
	-7,000	58,75	1840,00	1033,6	924,9	851,9	1041,7	1408,1	15
	-7,000	90,00	2140,00	1033,6	1075,7	906,1	1107,9	1516,6	16
	-7,400	90,00	2160,00	1124,1	1085,7	955,2	1167,9	1588,8	17
	-7,800	90,00	2180,00	1214,5	1095,8	1004,3	1228,0	1661,1	18
	-8,200	90,00	2196.00	1305.0	1103,8	1052,7	1287.2	1732.0	19
	-8,600	90,00	2200,00	1395,5	1105,8	1098,9	1343,7	1798,5	19
	-9,000	90,00	2200,00	1486,0	1105,8	1144,4	1399.3	1863.5	20
	-9,400	90,00	2200,00	1576,5	1105,8	1190,0	1455,0	1928,6	21
	-9,800	90,00	2200,00	1666,9	1105,8	1235,5	1510,6	1993,6	21
	-10,200	90,00	2200,00	1757,4	1105,8	1281,0	1566,3	2058,7	22
-	-10,600	90,00	2139,50	1847,9	1075,4	1315,6	1608,6	2101,9	23
-	-11,000	90.00	1897,50	1938,4	953,8	1317,4	1610,8	2079.5	22
	-11,400	90,00	1655,50	2028,8	832,1	1319,2	1613,0	2057,0	22
	-11,800	90,00	1413,50	2119.3	710,5	1321,1	1615,3	2034.6	22
_	-12,000	90,00	1292,50	2164,6	649,7	1322,0	1616,4	2023,4	22
	-12,000	51.09	1035.00	2164,6	520.2	1275.5	1559.6	1930.4	21
	-12,000	51,09	1035,00	2104,0	520,2	1301.4	1591,2	1967,3	21
	-12,800	51,09	1035,00	2267,3	520,2	1327,2	1622,8	2004,2	22
	-13.200	51,09	1035.00	2318,6	520,2	1353.0	1654.4	2004,2	22
	-13,600	51,09	1035,00	2370,0	520,2	1378.9	1685.9	2078.1	22

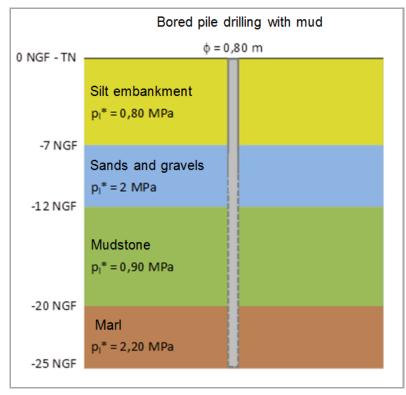
Figure K.39 : Results table (case of EC7 regulatory framework)

K.3.5.2.3. Graphical results: superposed bearing capacity curves

This graphic displays the bearing capacity of the pile for each combination versus the depth. As for the formatted results, the combinations displayed depend on the regulatory framework chosen:

- EC7 case: quasi-permanent SLS, characteristic SLS, permanent and transient ULS (fundamental) and accidental ULS;
- Fascicle 62 case: Creep, quasi-permanent SLS, rare SLS, permanent and transient ULS (fundamental) and accidental ULS;
- DTU 13.2 case: SLS and ULS;
- case of a free calculation: Coeff i (one column per combination created in the "Parameters" tab).




Figure K.40 : Superposed bearing capacity curves (case of EC7 regulatory framework)

K.4. Calculation examples

K.4.1. Example 1

This example deals with the case of a single deep foundation in a heterogeneous soil medium: the purpose of the exercise is to evaluate the vertical bearing capacity as defined in standard NF.P 94-262 applying Eurocode 7 for deep foundations.

For a circular concrete pile (ϕ 800 mm) implemented by mud drilling, the aim is to determine the bearing capacity as a function of the embedment depth and to determine at what depth the maximum stress in the concrete is reached.

K.4.1.1. Calculation of bearing capacity for a given pile depth

Double-click the Foxta icon to start the programme, choose the type of login and the preferred language then click the **OK** button.

K.4.1.1.1. Data input

When the application opens, Foxta proposes:

- Creating a new project,
- Opening an existing project,
- > Automatically opening the last project used.

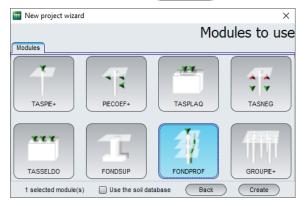
In the case of this example:

- Choose to create a new project by selecting the New project .radio button.
- > Click the \bigcirc K button.

New project wizard

"File" frame

- Fill out the project file path by clicking the _____ button.
- Give the project a name and save it.


"Project" frame

- \succ Give the project a title,
- Input a project number,
- Add comments if necessary,
- Leave the "Use the soil database" box unticked (we will not use the database for this example) and click the Next button.

📅 New project wizard	× k
-	New project
File File path (*) : : : : : : : : : : : : : : : : : : :	Manuels Foxta v3\K - Fondprof\Traduction\Example 1.fxp
Project	
Project title (*) :	Example 1
Project number (*) :	
Comments :	
(*) These fields are requ	uired 🔲 Use the soil database 🛛 🛛 Back Next

New project wizard: Choice of modules

Select the FONDPROF module, then click the Create button.

The FONDPROF data input window then appears. The various data tabs proposed must be filled out.

K.4.1.1.2. "Parameters" tab

This tab concerns the general calculation parameters.

"Calculation context" frame

- Regulatory framework:
- Design method:
- Data processing:
- Calculation step (m):

EC 7 – Standard NF.P 94-262. From pressuremeter results. Processing by layers. 0.40 m.

Note: Processing by layers means that a single average limit pressure value per layer should be entered. This processing is suited to the case of a geotechnical model pre-defined by the

user. In this case, the limit pressure value is taken as being homogeneous over the height of the layer (see chapter K.3.2.1.2).

				G	eneral s	setting
n context Regu	liatory framework	EC 7 - NF	P 94-262 standard		~	
Desig	gn method	From pres	suremeter results		~	
Data	processing	Processing	g by layers		~	
Calco	ulation step (m)			0	0,40 0	
etry		5. s				
Cale	wation section	Circu	lar section		~	
Calc	culation diameter (m)			(0,80 08,0	
	1					
2]					
system]					
2	2005	Class 1 - b	Sored pleimscrapile		v	
system Pile c	l alteory		Sored plemicropile 2 (FB) - Studge drilled (piles	and batten pinte)	V V	
system Pile c		Category 2	2 (F8) - Sludge drilled (plies			
system Pile c			2 (F8) - Sludge drilled (plies			
system Pile d Pile d		Category 2	2 (F8) - Sludge drilled (plies			
system Pile d Pile d	ategory	Category 2	2 (FB) - Skudge drilled (piles uk 🗌 Very k		~	
system Pile c				and batten piate)		

"Pile geometry" frame

Calculation section:

Calculation diameter (m):

Circular calculation section. 0.80 m.

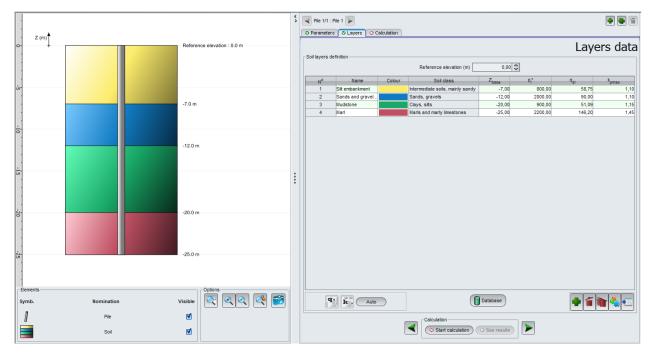
- "Weighting system" frame
 - > Pile class:

 \geq

- Pile category:
- Class 1 Drilled pile/micro-pile.
- Category 2 [FB] Sludge drilled (piles and rectangular piles). Unticked.
- \triangleright Embedded in chalk: Load mode:
- Compression strength.

Note: The weightings applied to Qs and Qp now also depend on the nature of the embedment layer (chalk or other).

The project weighting details can be displayed by clicking the 2 button.


📅 Details		×
$\begin{split} & \text{SLS / combined weighting on } Q_s = \beta_s / (\gamma_{R;d1}^* \gamma_{R;d2}^* \gamma_{cr}) \\ & \text{ULS / combined weighting on } Q_s = 1 / (\gamma_{R;d1}^* \gamma_{R;d2}^* \gamma_t) \\ & \text{SLS / combined weighting on } Q_p = \beta_p / (\gamma_{R;d1}^* \gamma_{R;d2}^* \gamma_{cr}) \\ & \text{ULS / combined weighting on } Q_p = 1 / (\gamma_{R;d1}^* \gamma_{R;d2}^* \gamma_t) \end{split}$	Coefficient β _p ELS β _s ELS YR;d1 YR;d2 Y _{or} ELS _{qp} Y _{or} ELS _{cara} Y _q EUF _{cara} Y _q EUF _{ond}	Value 0,50 0,70 1,15 1,10 1,10 0,90 1,10
	Y _t ELU _{acc}	1,00

To move onto the next tab, click either the name of the "Layers" tab, or the button.

K.4.1.1.3. "Layers" tab

This tab is used to define the soil layers.

Reference elevation: 0.00 m.

Click the 🗣 button to create each of the layers.

For the various soil layers, input:

- Soil class.
- Elevation of base of layer Z_{base} (m). Note: The model must stop below the base of the foundations. In the event of any uncertainty regarding their length, make provision for a margin of several metres.
- > Average limit pressure value p_1^* (kPa).
- Limit unit friction value q_{sl} (kPa).
- Value of maximum bearing factor k_{pmax} (valid as of embedment equivalent to 5 diameters).

Name Soil class		Z _{base} (m)	p _l * (kPa)	q _{sl} (kPa)	k _{pmax} (-)
Silty embankment Intermediate soils, mainly sandy		-7	800	58.75	1.10
Sand and gravel	Sand, gravel	-12	2000	90.00	1.10
Clays	Clay, Silt	-20	900	51.09	1.15
Marl	Marl and marly limestone	-25	2200	146.20	1.45

The values of q_{sl} and k_{pmax} can be input by hand or calculated with the corresponding wizards, available at the bottom of the "Soil layers definition" frame. In this present case, we can use the automatic wizard described below.

Automatic wizard for qsl and kpmax

Clicking the Auto button automatically calculates the values of q_{sl} and k_{pmax} for all the soil layers.

However, in general, it is also possible to use the q_{sl} and k_{pmax} wizards individually for each layer:

Wizard for q_{sl}

Select the soil layer concerned then click the 🛐 button to start the wizard.

qsl wizerd										×
100				I.						
180		-								
140		1								
120										
(FPa) 001 (FPa)	/									
15 80		1								
00		1								
		1								
20										
0	500 1000 1500 2000	2 600	3 000 3 600	4 000	4 500	6 000	6 600	6 000	6 600	70
			pl* (kPa)						
ata	[-	Results		1.1.1.1.1.1		_
of class	Mark and mark imestones	~	pj* (kPa)		2200		20	04)=146 kPr	5	
le category	Category 2 [FD] Studge drilled (piles i	and batten plate	¢		Ŷ		C	Send)		
Details										
pieu-sol ^{= 1.5}	a = 0.008									
	b = 0.08 c = 3.0									
formation										
For very long pil	les, 50% reduction on the used shaft fr	iction value sh	hould be applied dur	ing calculatio	ins on pile	sections	located			
	many from the tes			9.500 - 101.00	10012-0					
more than 25m a	away from the toe.									
more than 25m a	away from the toe.									
more than 25m a	away inclusions to a									
more than 25m a	away from the loc.									
more than 25m a	anay iron ule ioc.									
more than 25m a	ang non ne os.									
more than 25m a	and the for							(14	oort the grap	hcs)
more than 25m a	and the res							(53	port the grap	hics

➢ "Data" frame

The wizard uses the data previously input for the selected layer (soil type, value of p_1^*) as well as the chosen pile category. If the layer data have not yet been filled out, they can be input into the wizard.

➤ "Details" frame

The $\alpha_{\text{pile-soil}}$ parameter and the values of a, b and c are automatically calculated as a function of the data input in the "Data" frame and are displayed here.

"Information" frame

Whenever necessary, additional information needed to determine q_{sl} is detailed.

Graph

The graph displays the q_{sl} versus p_l^* curve in blue. The red line can be used to read the value of q_{sl} obtained for the input value of p_l^* .

"Results" frame

When the proposed parameters are satisfactory, clicking the \underline{Send} button enables the value of q_{sl} to be sent to the layers definition table for the selected soil layer.

Click the Close button and repeat the operation for each of the soil layers.

Wizard for k_{pmax}

Select the soil layer concerned then click the **W** button to start the wizard.

ΪŤ	kpmax wizard	Х
	Pile class : 1 - Bored pile/micropile	
	k _{pmax} = 1.1 Send	
	Information — Please refer to the wizard in the "Parameters" tab or to the article A.10 of NF P 94-262 standard to choose the areas and perimeters of piles to be considered in the calculations.	
	For micropiles, the toe term is conventionally not taken into account.	
	Close	

The wizard uses the pile class chosen and the type of soil selected if already input, otherwise it needs to be filled out.

When necessary, additional information needed to determine q_{sl} is detailed.

The value of k_{pmax} is then calculated. Clicking the <u>Send</u> button enables this value to be sent to the project for the selected soil layer.

Click the Close button and repeat the operation for each of the soil layers.

K.4.1.1.4. "Calculation" tab

This tab concerns the criteria used to design the foundation.

Three options are possible:

- "Imposed load at pile head": the software automatically checks for the foundation length able to take up the load applied at the pile head.
- "Imposed stress at pile head": the software automatically checks for the foundation length able to take up the stress applied at the pile head.
- "Imposed length": the software calculates the bearing capacity of the foundation for all calculation steps until the maximum length set by the user is reached.

Here we wish to analyse the variation in bearing capacity as a function of depth:

Select "Imposed length": 25 m.

Save the project.

•
Calculation
25,00 🗘

K.4.1.1.5. Calculation and Results

Calculation

Until all the tabs have been correctly filled out, the button used to start calculation is displayed with a red cross: ³ Start calculation.

Once all the data have been correctly filled out, the **Start calculation** button becomes active and is accessible from all the tabs.

Clicking this button will start the calculation.

<u>Results</u>

To access the results in the form of tables and graphics, click the **See results** button.

	Calculated : 1 second ago (Calculation date : Feb 23, 2016 5:16:05 PM)	Back to the data
∩ Numerical results	Formaticed results	
- Graphical results	Superimposed curves for bearing c	

"Numerical results" frame

The "Formatted results" and "Results tables" are accessible by clicking the corresponding button.

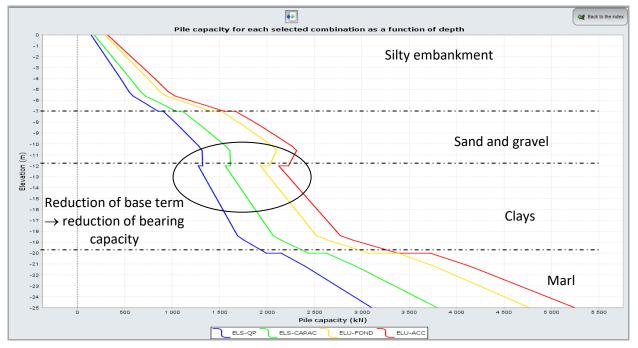
Formatted results

	Copy all	Copy only th		L = 25.0	00						
	Cure	ar a rongaca	i imposee .	2 - 20.							
	couche	cote	qs1	ple	kp	Qs	Qp	ELS-QP	ELS-CARA	ELU-FOND	ELU-ACC
	01	0.00	58.75	800.0	1.000	0.0	402.1	144.4	176.5	289.1	318.1
	01	-0.40	58.75	800.0	1.010	59.1	406.1	175.5	214.6	334.5	368.0
	01	-0.80	58.75 58.75	800.0 800.0	1.020	118.1 177.2	410.2 414.2	206.7	252.7 290.8	379.8 425.2	417.9 467.8
	01	-1.60	58.75	800.0	1.040	236.2	418.2	269.0	328.9	470.6	517.7
	01	-2.00	58.75	800.0	1.050	295.3	422.2	300.1	367.0	515.9	567.6
	01	-2.40	58.75	800.0	1.060	354.4	426.3	331.3	405.1	561.3	617.5
	01	-2.80	58.75	800.0	1.070	413.4	430.3	362.4	443.2	606.6	667.4
	01	-3.20	58.75	800.0	1.080	472.5	434.3	393.6	481.2	652.0	717.3
	01	-3.60 -4.00	58.75	800.0 800.0	1.090	531.6 590.6	438.3 442.3	424.7 455.9	519.3 557.4	697.3 742.7	767.2 817.1
	01	-4.40	58.75 58.75	800.0	1.100	649.7	442.3	485.6	593.7	785.2	863.8
	01	-4.80	58.75	800.0	1.100	708.7	442.3	515.3	630.1	827.6	910.5
	01	-5.20	58.75	800.0	1.100	767.8	442.3	545.0	666.4	870.1	957.2
	01	-5.60	58.75	860.0	1.100	826.9	475.5	586.6	717.3	936.4	1030.2
	01	-6.00	58.75	1100.0	1.100	885.9	608.2	664.0	811.9	1074.3	1181.9
	01	-6.40	58.75	1340.0	1.096	945.0	737.9	740.2	905.1	1210.0	1331.2
	01	-6.80	58.75	1580.0	1.086	1004.1	862.6	814.7	996.2	1342.1	1476.5
	01 02	-7.00	58.75 90.00	1700.0 2000.0	1.082	1033.6	924.9	851.9 906.1	1041.7 1107.9	1408.1 1516.6	1549.1
	02	-7.00 -7.40	90.00	2000.0	1.070 1.080	1033.6 1124.1	1075.7 1085.7	955.2	1167.9	1588.8	1668.4 1747.9
	02	-7.80	90.00	2000.0	1.090	1214.5	1095.8	1004.3	1228.0	1661.1	1827.5
	02	-8.20	90.00	2000.0	1.098	1305.0	1103.8	1052.7	1287.2	1732.0	1905.4
	02	-8.60	90.00	2000.0	1.100	1395.5	1105.8	1098.9	1343.7	1798.5	1978.6
	02	-9.00	90.00	2000.0	1.100	1486.0	1105.8	1144.4	1399.3	1863.5	2050.1
	02	-9.40	90.00	2000.0	1.100	1576.5	1105.8	1190.0	1455.0	1928.6	2121.7
	02	-10.20	90.00	2000.0	1.100	1757.4	1105.8	1281.0	1566.3	2058.7	2264.8
	02	-10.60	90.00	1945.0	1.100	1847.9	1075.4	1315.6	1608.6	2101.9	2312.3
	02	-11.00	90.00	1725.0	1.100	1938.4	953.8	1317.4	1610.8	2079.5	2287.7
	02	-11.40	90.00	1505.0	1.100	2028.8	832.1	1319.2	1613.0	2057.0	2263.0
luction of p _{le} *	02	-11.80	90.00	1285.0	1.100	2119.3	710.5	1321.1	1615.3	2034.6	2238.4
uction of ple	02	-12.00	90.00	1175.0	1.100	2164.6	649.7	1322.0	1616.4	2023.4	2226.1
•	03	-12.00	51.09	900.0	1.150	2164.6	520.2	1275.5	1559.6	1930.4	2123.7
	03	-12.40 -12.80	51.09 51.09	900.0 900.0	1.150	2215.9 2267.3	520.2 520.2	1301.4	1591.2 1622.8	1967.3 2004.2	2164.3 2204.9
	03	-13.20	51.09	900.0	1.150	2318.6	520.2	1353.0	1654.4	2041.2	2245.6
	03	-13.60	51.09	900.0	1.150	2370.0	520.2	1378.9	1685.9	2078.1	2286.2
	03	-14.00	51.09	900.0	1.150	2421.4	520.2	1404.7	1717.5	2115.0	2326.8
	03	-14.80	51.09	900.0	1.150	2524.1	520.2	1456.4	1780.7	2188.9	2408.1
	03	-15.20	51.09	900.0	1.150	2575.4	520.2	1482.2	1812.3	2225.8	2448.7
	03	-15.60	51.09	900.0	1.150	2626.8	520.2	1508.1	1843.9	2262.7	2489.3
	03	-16.00	51.09	900.0	1.150	2678.2	520.2	1533.9	1875.5	2299.7	2529.9
	03	-16.40 -16.80	51.09 51.09	900.0 900.0	1.150	2729.5 2780.9	520.2 520.2	1559.7	1907.1 1938.6	2336.6 2373.5	2570.6 2611.2
	03	-17.20	51.09	900.0	1.150	2832.3	520.2	1611.4	1938.6	2410.4	2611.2
	03	-17.60	51.09	900.0	1.150	2883.6	520.2	1637.2	2001.8	2447.4	2692.5
	03	-18.00	51.09	900.0	1.150	2935.0	520.2	1663.1	2033.4	2484.3	2733.1
	03	-18.40	51.09	900.0	1.150	2986.3	520.2	1688.9	2065.0	2521.2	2773.7
	03	-18.80	51.09	1095.0	1.150	3037.7	633.0	1755.2	2146.1	2639.2	2903.5
	03	-19.20	51.09	1355.0	1.150	3089.1	783.3	1835.0	2243.6	2784.2	3063.0
	03	-19.60	51.09	1615.0	1.150	3140.4	933.6	1914.8	2341.2	2929.2	3222.5
	03	-20.00	51.09	1875.0	1.144	3191.8	1078.2	1992.5	2436.3	3070.1	3377.6

The formatted results give:

> A reminder of the calculation parameters.

The results for the various calculation steps. The bearing capacities for the various load combinations are available: quasi-permanent SLS, characteristic SLS, permanent and transient ULS (fundamental) and accidental ULS.


Results tables

Z	q _{sl}	q _{ol}	QS	QP	Q-ELS-QP	Q-ELS-CARAC	Q-ELU-FOND	Q-ELU-ACC
0,000	58,75	800,00	0,0	402,1	144,4	176,5	289,1	
-0,400	58,75	808,00	59,1	406,1	175,5	214,6	334,5	
-0,800	58,75	816,00	118,1	410,2	206,7	252,7	379,8	
-1,200	58,75	824,00	177,2	414,2	237,8	290,8	425,2	
-1,600	58,75	832,00	236,2	418,2	269,0	328,9	470,6	
-2,000	58,75	840,00	295,3	422,2	300,1	367,0	515,9	
-2,400	58,75	848,00	354,4	426,2	331,3	405,1	561,3	
-2,800	58,75	856,00	413,4	430,3	362,4	443,1	606,6	
-3,200	58,75	864,00	472,5	434,3	393,6	481,2	652,0	
-3,600	58,75	872,00	531,6	438,3	424,7	519,3	697,3	
-4,000	58,75	880,00	590,6	442,3	455,9	557,4	742,7	
-4,400	58,75	880,00	649,7	442,3	485,6	593,7	785,2	
-4,800	58,75	880,00	708,7	442,3	515,3	630,1	827,6	
-5,200	58,75	880,00	767,8	442,3	545,0	666,4	870,1	
-5,600	58,75	946,00	826,9	475,5	586,6	717,3	936,4	
-6,000	58,75	1210,00	885,9	608,2	664,0	811,9	1074,3	
-6,400	58,75	1468,00	945,0	737,9	740,2	905,1	1210,0	
-6,800	58,75	1716,00	1004,1	862,6	814,7	996,1	1342,1	
-7,000	58,75	1840,00	1033,6	924,9	851,9	1041,7	1408,1	
-7,000	90,00	2140,00	1033,6	1075,7	906,1	1107,9	1516,6	
-7,400	90,00	2160,00	1124,1	1085,7	955,2	1167,9	1588,8	
-7,800	90,00	2180,00	1214,5	1095,8	1004,3	1228,0	1661,1	
-8,200	90,00	2196,00	1305,0	1103,8	1052,7	1287,2	1732,0	
-8,600	90,00	2200,00	1395,5	1105,8	1098,9	1343,7	1798,5	
-9,000	90,00	2200,00	1486,0	1105,8	1144,4	1399,3	1863,5	
-9,400	90,00	2200,00	1576,5	1105,8	1190,0	1455,0	1928,6	
-9,800	90,00	2200,00	1666,9	1105,8	1235,5	1510,6	1993,6	
-10,200	90,00	2200,00	1757,4	1105,8	1281,0	1566,3	2058,7	
-10,600	90,00	2139,50	1847,9	1075,4	1315,6	1608,6	2101,9	
-11,000	90,00	1897,50	1938,4	953,8	1317,4	1610,8	2079,5	
-11,400	90,00	1655,50	2028,8	832,1	1319,2	1613,0	2057,0	
-11,800	90,00	1413,50	2119,3	710,5	1321,1	1615,3	2034,6	
-12,000	90,00	1292,50	2164,6	649,7	1322,0	1616,4	2023,4	
-12,000	51,09	1035,00	2164,6	520,2	1275,5	1559,6	1930,4	
-12,400	51,09	1035,00	2215,9	520,2	1301,4	1591,2	1967,3	
-12,800	51,09	1035,00	2267,3	520,2	1327,2	1622,8	2004,2	
-13,200	51,09	1035,00	2318,6	520,2	1353,0	1654,4	2041,2	

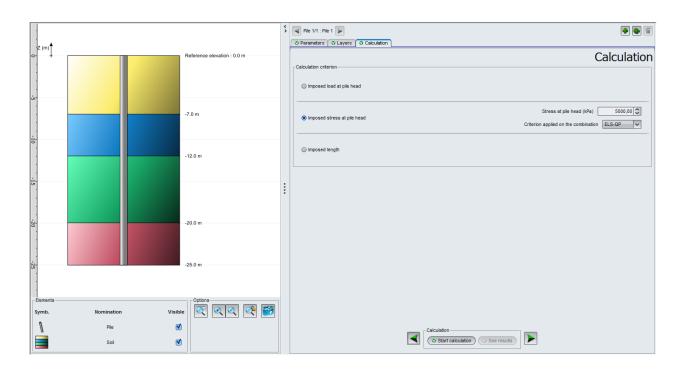
For each calculation step, the results table gives the results previously presented: bearing capacities for quasi-permanent SLS, characteristic SLS, permanent and transient ULS (fundamental) and accidental ULS.

"Graphical results" frame

The "superposed bearing capacity" curves are available by clicking the corresponding button.

This graphic gives the various bearing capacities down to the required depth of 25 m.

K.4.1.2. Calculation of bearing capacity for a given pile stress


Here we aim to determine at what pile length a stress of 5 MPa is reached in the concrete.

Go back to the data by clicking the <u>Sack to the data</u> button. Only the "Calculation" tab will be modified.

K.4.1.2.1. "Calculation" tab

This time please input:

- Imposed stress at pile head: 5000 kPa.
- > Criterion applied to the combination: SLS-QP.

Now restart the calculation by clicking the Start calculation button then click the See results button.

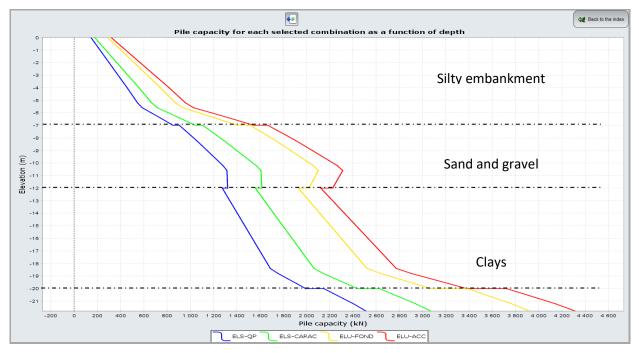
K.4.1.2.2. Calculation and Results

"Numerical Results" frame

Formatted Results

ouche	cote	qs1	ple	kp	Qs	Qp	ELS-QP	ELS-CARA	ELU-FOND	ELU-ACC
01	0.00	58.75	800.0	1.000	0.0	402.1	144.4	176.5	289.1	318.1
01	-0.40	58.75	800.0	1.010	59.1	406.1	175.5	214.6	334.5	368.0
01	-0.80	58.75	800.0	1.020	118.1	410.2	206.7	252.7	379.8	417.9
01	-1.20 -1.60	58.75 58.75	800.0	1.030	177.2 236.2	414.2	237.8 269.0	290.8 328.9	425.2	467.8 517.7
01	-2.00	58.75	800.0 800.0	1.040	295.3	418.2 422.2	300.1	367.0	515.9	567.6
01	-2.40	58.75	800.0	1.060	354.4	426.3	331.3	405.1	561.3	617.5
01	-2.80	58.75	800.0	1.070	413.4	430.3	362.4	443.1	606.6	667.4
01	-3.20	58.75	800.0	1.080	472.5	434.3	393.6	481.2	652.0	717.3
01	-3.60	58.75	800.0	1.090	531.5	438.3	424.7	519.3	697.3	767.2
01	-4.00	58.75	800.0	1.100	590.6	442.3	455.9	557.4	742.7	817.1
01	-4.40	58.75	800.0	1.100	649.7	442.3	485.6	593.7	785.1	863.8
01	-4.80	58.75 58.75	800.0 800.0	1.100	708.7	442.3	515.3 545.0	630.1 666.4	827.6 870.1	910.5 957.2
01	-5.60	58.75	860.0	1.100	826.8	475.5	586.6	717.3	936.4	1030.2
01	-6.00	58.75	1100.0	1.100	885.9	608.2	664.0	811.8	1074.3	1181.8
01	-6.40	58.75	1340.0	1.096	945.0	737.9	740.2	905.1	1210.0	1331.1
01	-6.80	58.75	1580.0	1.086	1004.0	862.6	814.7	996.1	1342.1	1476.5
01	-7.00	58.75	1700.0	1.082	1033.6	924.9	851.9	1041.7	1408.1	1549.1
02	-7.00	90.00	2000.0	1.070	1033.6	1075.7	906.0	1107.9	1516.5	1668.4
02	-7.40	90.00	2000.0	1.080	1124.0	1085.7	955.2	1167.9	1588.8	1747.9
02	-7.80	90.00 90.00	2000.0	1.090	1214.5 1305.0	1095.8 1103.8	1004.3	1228.0 1287.2	1661.1 1731.9	1827.4 1905.4
02	-8.60	90.00	2000.0	1.100	1395.5	1105.8	1098.9	1343.7	1798.4	1978.5
02	-9.00	90.00	2000.0	1.100	1485.9	1105.8	1144.4	1399.3	1863.5	2050.1
02	-9.40	90.00	2000.0	1.100	1576.4	1105.8	1189.9	1455.0	1928.6	2121.7
02	-9.80	90.00	2000.0	1.100	1666.9	1105.8	1235.4	1510.6	1993.6	2193.2
02	-10.20	90.00	2000.0	1.100	1757.4	1105.8	1281.0	1566.3	2058.7	2264.8
02	-10.60	90.00	1945.0	1.100	1847.9	1075.4	1315.6	1608.5	2101.8	2312.3
02	-11.00	90.00	1725.0	1.100	1938.3	953.8	1317.4	1610.8	2079.4	2287.7
02	-11.40 -11.80	90.00	1505.0	1.100	2028.8	832.1	1319.2 1321.1	1613.0 1615.3	2057.0	2263.0
02	-12.00	90.00 90.00	1285.0 1175.0	1.100	2119.3 2164.5	710.5 649.7	1322.0	1615.3	2034.6 2023.4	2238.4 2226.0
02	-12.00	51.09	900.0	1.150	2164.5	520.2	1275.5	1559.6	1930.4	2123.7
03	-12.40	51.09	900.0	1.150	2215.9	520.2	1301.4	1591.2	1967.3	2164.3
03	-12.80	51.09	900.0	1.150	2267.3	520.2	1327.2	1622.7	2004.2	2204.9
03	-13.20	51.09	900.0	1.150	2318.6	520.2	1353.0	1654.3	2041.1	2245.5
03	-13.60	51.09	900.0	1.150	2370.0	520.2	1378.9	1685.9	2078.1	2286.2
03	-14.00	51.09	900.0	1.150	2421.3	520.2	1404.7	1717.5	2115.0	2326.8
03	-14.40	51.09	900.0	1.150	2472.7	520.2	1430.5	1749.1	2151.9	2367.4
03	-14.80 -15.20	51.09 51.09	900.0 900.0	1.150	2524.0 2575.4	520.2 520.2	1456.4 1482.2	1780.7 1812.3	2188.8 2225.8	2408.0 2448.7
03	-15.60	51.09	900.0	1.150	2626.8	520.2	1508.0	1843.8	2262.7	2489.3
03	-16.00	51.09	900.0	1.150	2678.1	520.2	1533.9	1875.4	2299.6	2529.9
03	-16.40	51.09	900.0	1.150	2729.5	520.2	1559.7	1907.0	2336.6	2570.5
03	-16.80	51.09	900.0	1.150	2780.8	520.2	1585.5	1938.6	2373.5	2611.2
03	-17.20	51.09	900.0	1.150	2832.2	520.2	1611.4	1970.2	2410.4	2651.8
03	-17.60	51.09	900.0	1.150	2883.6	520.2	1637.2	2001.8	2447.3	2692.4
03	-18.00	51.09	900.0	1.150	2934.9	520.2	1663.0	2033.4	2484.3	2733.0
03	-18.40	51.09	900.0	1.150	2986.3	520.2	1688.9	2064.9	2521.2	2773.7
03	-18.80	51.09	1095.0	1.150	3037.6	633.0	1755.2	2146.0	2639.2	2903.4
03	-19.20	51.09	1355.0	1.150	3089.0	783.3	1835.0	2243.6	2784.2	3063.0
03 03	-19.60 -20.00	51.09 51.09	1615.0 1875.0	1.150	3140.4 3191.7	933.6 1078.2	1914.7 1992.5	2341.1 2436.2	2929.1 3070.1	3222.5 3377.5
03	-20.00	51.09	1875.0	1.144	3191.7	1078.2	1992.5	2436.2	3070.1	3377.5
04	-20.00	146.20	2200.0	1.368	3191.7	1513.0	2148.6	2627.1	3382.7	3721.4
04	-20.40	146.20	2200.0	1.395	3338.7	1542.4	2233.1	2730.4	3509.5	3860.9
04	-20.80	146.20	2200.0	1.421	3485.7	1571.8	2317.6	2833.7	3636.3	4000.5
04	-21.20	146.20	2200.0	1.448	3632.6	1601.2	2402.1	2937.0	3763.1	4140.0
04	-21.60	146.20	2200.0	1.450	3779.6	1603.5	2476.8	3028.4	3870.4	4258.0
04	-21.80	146.20	2200.0	1.450	3852.1	1603.5	2513.3	3073.0	3922.6	4315.4

This time, the formatted results provide the previous results up to the depth for which the stress on the pile section reaches 5 MPa, i.e. a load Q = 5 MPa * $S_{pile} \approx 2.51$ MN.

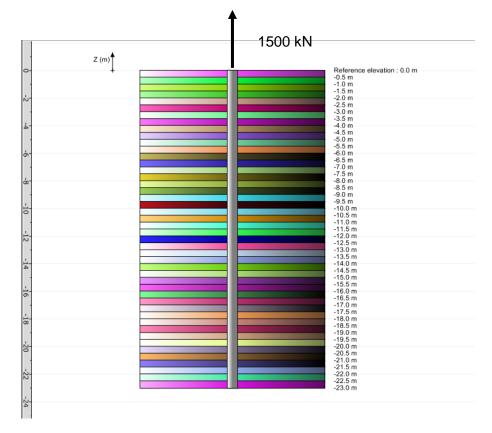

The bearing capacity at SLS_{qp} reaches this value for a pile embedded at elevation -21.80. It is therefore pointless to deepen the piles beyond this depth, because the limiting factor will then be the strength of the concrete and no longer the bearing capacity of the foundation.

Results tables

z		q _{sl}	q _{ol}	QS	QP	Q-ELS-QP		Q-ELS-CARAC	Q-ELU-FOND	Q-ELU-ACC
	-8.600	90.00	2200.00	1395.5	1105.	8	1098.9	1343.7	1798.5	1978.6 ^
	-9,000	90,00	2200,00	1486,0	1105.	8	1144,4	1399,3	1863,5	2050.1
	-9,400	90,00	2200,00	1576,5	1105,	8	1190,0	1455,0	1928,6	2121,7
	-9,800	90,00	2200,00	1666,9	1105,	8	1235,5	1510,6	1993,6	2193,3
	-10,200	90,00	2200,00	1757,4	1105,	8	1281,0	1566,3	2058,7	2264,8
	-10,600	90,00	2139,50	1847,9	1075,	4	1315,6	1608,6	2101,9	2312,3
	-11,000	90,00	1897,50	1938,4	953,	8	1317,4	1610,8	2079,5	2287,7
	-11,400	90,00	1655,50	2028,8	832,	1	1319,2	1613,0	2057,0	2263,0
	-11,800	90,00	1413,50	2119,3	710,	5	1321,1	1615,3	2034,6	2238,4
	-12,000	90,00	1292,50	2164,6	649,	7	1322,0	1616,4	2023,4	2226,1
	-12 000	51.09		2164.6	520		1275.5	1559.6	1930.4	2123 7
		-12,000	90,00	1292,50	2164,6	649,7		1322,0	1616,4	2023,4
		-12,000	51,09	1035,00	2164,6	520,2		1275,5	1559,6	1930,4
		-12,400	51,09	1035,00	2215,9	520,2		1301,4	1591,2	1967,3
		-12,800	51,09	1035,00	2267,3	520,2		1327,2	1622,8	2004,2
		-13,200	51,09	1035,00	2318,6	520,2		1353,0	1654,4	2041,2
		-13,600	51,09	1035,00	2370,0	520,2		1378,9	1685,9	2078,1
		-14,000	51,09	1035,00	2421,4	520,2		1404,7	1717,5	2115,0
		-14,400	51,09	1035,00	2472,7	520,2		1430,5	1749,1	2151,9
		-14,800	51,09	1035,00	2524,1	520,2		1456,4	1780,7	2188,9
		-15,200	51,09	1035,00	2575,4	520,2		1482,2	1812,3	2225,8
		-15,600	51,09	1035,00	2626,8	520,2		1508,1	1843,9	2262,7
		-16,000	51,09	1035,00	2678,2	520,2		1533,9	1875,5	2299,7
		-16,400	51,09	1035,00	2729,5	520,2		1559,7	1907,1	2336,6
		-16,800	51,09	1035,00	2780,9	520,2		1585,6	1938,6	2373,5
		-17,200	51,09	1035,00	2832,3	520,2		1611,4	1970,2	2410,4
		-17,600	51,09	1035,00	2883,6	520,2		1637,2	2001,8	2447,4
		-18,000	51,09	1035,00	2935,0	520,2		1663,1	2033,4	2484,3
		-18,400	51,09	1035,00	2986,3	520,2		1688,9	2065,0	2521,2
		-18,800	51,09	1259,20	3037,7	633,0		1755,2	2146,1	2639,2
		-19,200	51,09	1558,20	3089,1	783,3		1835,0	2243,6	2784,2
		-19,600	51,09	1857,20	3140,4	933,6		1914,8	2341,2	2929,2
		-20,000	51,09	2145,00	3191,8	1078,2		1992,5	2436,3	3070,1
		-20,000	51,09	2145,00	3191,8	1078,2		1992,5	2436,3	3070,1
		-20,000	146,20	3010,00	3191,8	1513,0		2148,6	2627,1	3382,7
		-20,400	146,20	3068,50	3338,8	1542,4		2233,1	2730,4	3509,6
		-20,800	146,20	3127,00	3485,7	1571,8		2317,6	2833,7	3636,4
1		-21,200	146,20	3185,50	3632,7	1601,2		2402,1	2937,0	3763,2
		-21,600	146,20	3190,00	3779,7	1603,5		2476.8	3028,4	3870,5

Similarly, the results table this time provides the previous results down to the depth of 21.80 m.

"Graphical results" frame


Similarly, the graph of bearing capacities provides the previous results down to the depth of 21.80 m.

K.4.2. Example 2

This example deals with the case of an HEA 800 section (h = 0.8 m and b = 0.3 m) driven into sand and working in traction. The soil data are taken from the CPT (static penetrometer) results and will be imported from an Excel[®] file.

The imposed load at pile head is 1500 kN in traction, in Fundamental ULS combination.

K.4.2.1. Data input

- Choose to create a new project, by selecting the New project radio button;
- Click the OK button.

If Foxta is already open, click the "File" menu, "New project".

K.4.2.1.1. New Project Wizard

"File" frame:

- Fill out the file path by clicking the _____ button;
- Give the file a name and save it.

"Project" frame:

- Give the project a title;
- Enter a project number;
- Enter a comment if necessary;
- Leave the "Use soil database" box unticked (we will not use the database for this example) and click the Next button.

	New proj
File	
File path (*) : xemples\W	/lanuels Foxta v3\K - Fondprof\Traduction\Example_2.fxp
Project	
Project title (*) :	Example 2
Project number (*) :	Foxta v3
Comments :	
l	

K.4.2.1.2. New Project wizard: choice of module

Select the FONDPROF module, then click the Create button.

🛅 New project wizard	×
	Modules to use
Modules	
T T	
TASPIE+ PIECOEF+	TASPLAQ TASNEG
TASSELDO	FONDPROF
1 selected module(s) 🔲 Use the soil da	tabase Back Create

The FONDPROF data input window appears. The various data tabs must now be filled out.

K.4.2.2. "Parameters" tab

This tab comprises three frames used to define the general calculation parameters.

"Calculation context" frame:

- Regulatory framework: EC7 Standard NF.P 94-262;
- Design method: From penetrometer results;
- Data processing: Processing by measurements (see example 1 for more details on this choice);
- Calculation step (m): 0.10.

"Pile geometry" frame:

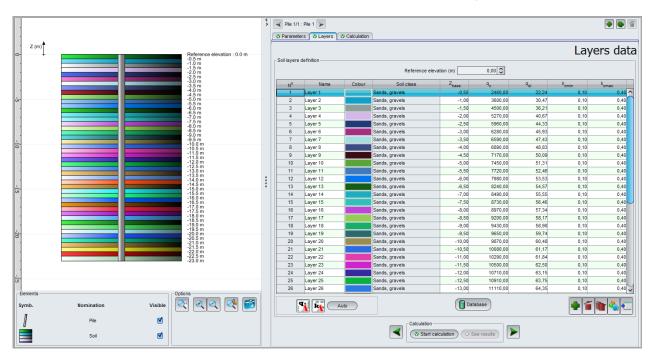
- Calculation section: Irregular calculation section (an HEA 800 section);
- Calculation section (m²): 0.240 (we use the complete area of the section);
- Calculation perimeter (m): 2.20 (we use the total perimeter of the section).

Note: the section will not be used in the calculation for this example, because the pile is traction.

The "Calculation section" help diagram is accessible by clicking the 2 button (see example 1).

				General setting
Calculation context				
	Regulatory framework	EC 7 - NF.P 94-262 standard	~	
	Design method	From penetrometer results	~	
	Data processing	Processing by measurements	~	
	Calculation step (m)		0,10 🗘	
Pile geometry				
	Calculation section	Irregular section	~	
	Calculation section (m ²)		0,240 🗘	
	Calculation perimeter (m)		2,200 🗘	
111-1-1-1-1				
Weighting system				
	Pile class	Class 6 - H-sections	~	
	Pile category	Category 14 [HB] - H-section driven	~	
		Clamped in chalk		
	Load mode	Tensile strength	~	
		ELS-CARAC	ELU-FOND	ELU-ACC
	ELS-QP			0,597
Combined weighting on Q _s	ELS-QP 0,293	0,399	0,545	0,557
Combined weighting on Q _s Combined weighting on Q _p			0,545	0,597
	0,293	0,399		

"Weighting system" frame:


- Pile class: 6 H-section;
- Pile category : 14 [HB] H-section driven;
- Embedment in chalk: unticked;
- Load mode: Tensile strength.

The combined weightings on Q_s and Q_p appear at the bottom of this frame (the \square button next to the table is used to display the project weighting details).

To move onto the next tab, click either the name of the "Layers" tab, or the button.

K.4.2.3. "Layers" tab

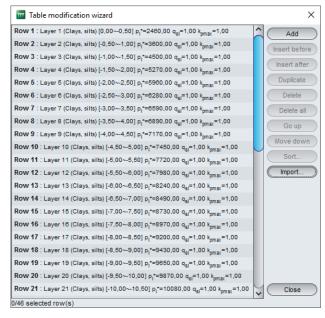
This tab is used to define the reference elevation and the various soil layers.

The characteristics of the layers are assumed to be the "raw" results of CPT measurements. We have 46 measurement points down to a depth of 23 m, which will entail the creation of 46 soil "layers" (in practice, it could be many more).

We will import the soil characteristics (CPT) from an Excel[®] spreadsheet ('Valeurs qc.xls') containing these raw test results: see following screenshot.

🗃 Va	alues qc.ods - O	penOffice Calc									-		\times
ile	<u>E</u> dit <u>V</u> iew <u>I</u> ns	ert F <u>o</u> rmat]	[ools <u>D</u> ata	<u>W</u> indow <u>H</u> elp	,								5 >
1	• <u> </u> • 📃 🖻	🍇 📝 🔒	🖴 🖻 🗳	🏂 🔀 🗉	b 🛍 • 🛷	5 - @ - (🗟 🛃 🔏	止 🅢 👬	2 🖻 🗐	ا 💽 ا	Find	~ 4	,
9,	Calibri	~	11 ~	B <i>I</i> <u>∪</u>		= III "h	% 🐝 號 %	🕷 ∉ ∉	🗆 • 🖄 • 🛓	<u>A</u>			
P23		∕ <u>7</u> x ∑ :	=										₹.
	Α	В	С	D	E	F	G	Н	1	J	К	^	
1		qc											8
2	-0,5	2460											
3	-1	3600											1
4	-1,5	4500											
5	-2	5270											6
6	-2,5	5960											
7	-3	6280											2
8	-3,5	6590											£
9	-4	6890											1
10	-4,5	7170											
11	-5	7450											
12	-5,5	7720											
13	-6	7980											
14	-6,5	8240										~	
•	N Sheet1	<u>/ Sheet2 / She</u>	et3 /	<								>	
Sheet	t1/3		Default			STD		Sum	n=0	Θ	6		100 %

"Soil layers definition" frame:


- Input the reference elevation (m): 0.00;
- To import the 46 soil "layers", we will proceed as follows:
 - create the first soil layer "Layer 1" by clicking the button. Select the soil class 'Sand, gravel', which will enable Fondprof to fill out this field automatically for all the other soil layers during import;
 - open the 'Valeurs qc.xls' file (provided at installation of Foxta v3, in the Examples

 Fondprof subdirectory) and copy the data (for this example, copy the data from
 line 1 to line 47 and columns A and B into the Windows[®] clipboard);
 - open the "Table modification wizard" sand click the ______ button;
 - in this wizard, specify that lines 2 to 47 must be imported. The first line comprising the column headers should be ignored;

poard contents			
Column 1		Column 2	
	0		0
	-0,5		2460
	-1		3600
	-1,5		4500
	-2		5270
	-2,5		5960
	-3		6280
	-3,5		6590
	-4		6890
	-4,5		7170
	-5		7450
	-5,5		7720
	-6		7980
	-6,5		8240
	-7		8490
	-7,5		8730
	-8		897
	-8,5		9200
	-9		9430
	-9,5	•	9650
se	✓ P	P1"	
ons			
	Only the black-font ce	Ils will be imported	
	First row to import Row 2 🗸	Last row to import Row 47 🗸	
Number of rows to import into the tab	le : 46 Number of columns to import	t into the table : 2 Number of rows to create in the table : 46	

the table modification wizard displays the imported data. Click the Close button: the 46 soil layers are now created with a default name, the soil class (copied from the first line), the values of z_{base} and q_c.

• The values of q_{sl}, k_{cmin} and k_{cmax} must now be filled out, in accordance with the table below. To do this, we can use the <u>Auto</u> wizard, which will fill out the values of q_{sl}, k_{cmin} and k_{cmax} for all the layers (see following screenshots).

▼ Parameters ▼ Layers ▼ Calculation

			Reference el		0	,00 🗘			
N ^o	Name	Colour	Soil class	Z _{base}	q	c	q _{sl}	k _{omin}	k _{omax}
1	Layer 1		Sands, gravels		,50	2460,00	22,24	0,10	0,4
2	Layer 2		Sands, gravels	-1,	,00	3600,00	30,47	0,10	0,4
3	Layer 3		Sands, gravels	-1,	,50	4500,00	36,21	0,10	0,4
4	Layer 4		Sands, gravels	-2	,00	5270,00	40,67	0,10	0,4
5	Layer 5		Sands, gravels	-2	,50	5960,00	44,33	0,10	0,4
6	Layer 6		Sands, gravels	-3	,00	6280,00	45,93	0,10	0,4
7	Layer 7		Sands, gravels	-3	,50	6590,00	47,43	0,10	0,4
8	Layer 8		Sands, gravels	-4	,00	6890,00	48,83	0,10	0,4
9	Layer 9		Sands, gravels	-4	,50	7170,00	50,09	0,10	0,4
10	Layer 10		Sands, gravels	-5	,00	7450,00	51,31	0,10	0,4
11	Layer 11		Sands, gravels	-5	,50	7720,00	52,46	0,10	0,4
12	Layer 12		Sands, gravels	-6	,00	7980,00	53,53	0,10	0,4
13	Layer 13		Sands, gravels	-6	,50	8240,00	54,57	0,10	0,4
14	Layer 14		Sands, gravels	-7,	,00	8490,00	55,55	0,10	0,4
15	Layer 15		Sands, gravels	-7,	,50	8730,00	56,46	0,10	0,4
16	Layer 16		Sands, gravels	-8	,00	8970,00	57,34	0,10	0,4
17	Layer 17		Sands, gravels	-8	,50	9200,00	58,17	0,10	0,4
18	Layer 18		Sands, gravels	-9	,00	9430,00	58,98	0,10	0,4
19	Layer 19		Sands, gravels	-9	,50	9650,00	59,74	0,10	0,4
20	Layer 20		Sands, gravels	-10	,00	9870,00	60,48	0,10	0,4
21	Layer 21		Sands, gravels	-10	, 50 1	10080,00	61,17	0,10	0,4
22	Layer 22		Sands, gravels	-11,	, 00 1	10290,00	61,84	0,10	0,4
23	Layer 23		Sands, gravels	-11,	, 50 1	10500,00	62,50	0,10	0,4
24	Layer 24		Sands, gravels	-12	, 00 1	10710,00	63,15	0,10	0,4
25	Layer 25		Sands, gravels	-12	, 50 1	10910,00	63,75	0,10	0,4
26	Layer 26		Sands, gravels	-13	, 00 1	11110,00	64,35	0,10	0,4
27	Layer 27		Sands, gravels	-13	, 50 1	11300,00	64,90	0,10	0,
28	Layer 28		Sands, gravels	-14	, 00 1	11500,00	65,47	0,10	0,
29	Layer 29		Sands, gravels	-14	, 50 1	11690,00	66,00	0,10	0,4
30	Layer 30		Sands, gravels	-15	, 00 1	11870,00	66,49	0,10	0,4
31	Layer 31		Sands, gravels	-15	, 50 1	12060,00	67,00	0,10	0,-
32	Layer 32		Sands, gravels	-16	, 00 1	12240,00	67,48	0,10	0,
33	Layer 33		Sands, gravels	-16	, 50 1	12420,00	67,95	0,10	0,
34	Layer 34		Sands, gravels	-17,	, 00 1	12600,00	68,41	0,10	0,-
35	Layer 35		Sands, gravels	-17	, 50 1	12780,00	68,86	0,10	0,
36	Layer 36		Sands, gravels	-18	, 00 1	12950,00	69,28	0,10	0,
37	Layer 37		Sands, gravels	-18	, 50 1	13130,00	69,72	0,10	0,
38	Layer 38		Sands, gravels	-19	, 00 1	13300,00	70,13	0,10	0,
39	Layer 39		Sands, gravels	-19	, 50 1	13470,00	70,53	0,10	0,-
40	Layer 40		Sands, gravels	-20	, 00 1	13630,00	70,91	0,10	0,
41	Layer 41		Sands, gravels	-20	, 50 1	13800,00	71,30	0,10	0,
42	Layer 42		Sands, gravels	-21	, 00 1	13960,00	71,66	0,10	0,
43	Layer 43		Sands, gravels	-21	, 50 1	14130,00	72,04	0,10	0,4
44	Layer 44		Sands, gravels	-22		14290,00	72,39	0,10	0,4
45	Layer 45		Sands, gravels	-22	, 50 1	14450,00	72,74	0,10	0,4
46	Layer 46		Sands, gravels	-23		14610,00	73,08	0,10	0,4
_		uto		(Database)		•	1

The q_s and k_p wizards are also accessible by clicking the \fbox buttons.

K.4.2.4. "Calculation" tab

This calculation is made with an imposed load at pile head of 1500 kN in the ULS-Fundamental combination:

- calculation criterion: imposed load at pile head;
- load at pile head (kN): 1500 (in traction);
- criterion applied to the combination: ULS-FOND.

I	♥ Parameters V Layers V Calculation	
		Calculation
	Calculation criterion	
	Imposed load at pile head	Load at pile head (kN) 1500,00 🗘
	Inposed toad at pie nead	Criterion applied on the combination ELU-FOND V
	Imposed stress at pile head	
	Imposed length	

K.4.2.5. Calculations and results

K.4.2.5.1. Calculations

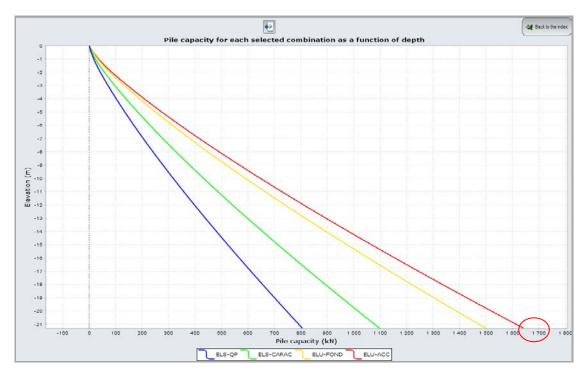
Until all the tabs are correctly filled out, the button used to start the calculation is marked with a red cross: Start calculation.

Once all the data have been correctly input, the **Start calculation** button (accessible from all the tabs) becomes active.

Clicking this button will start the calculation.

To access the results in the form of tables and graphics, click the **See results** button.

K.4.2.5.2. Results


Formatted results

ormatt	ea resi	uits									
		_			¢	- calcul - profil - pour p	basé sur des selon les rè	gles de la no e de pointe o rie : 14	orme NF P 94 ac défini par	tromètre statiq 262 point de mesur	
						Combinaison					
						Frottement Pointe	0.293 0.000	0.399 0.000	0.545 0.000		
						Cote de réf Section du Périmètre : Caractéristi	pieu :	0.000 0.240 2.200 hes (données	utilisateur)		
					-		use qc			_	
							.50 2460 .00 3600				
			JTION***								
Calcu	ıl à charge i	mposée : Q) = 1500.0	0 visàvis	; de la cor	nbinaison :	ELU-FOND				
couche		asl					ELS-OP	ELS-CARA	ELU-FOND	ELU-ACC	
01	0.00	22.24	qce 3180.0	kc 0.100	Qs 0.0	Qp 76.3	0.0	0.0	0.0	0.0	
01	-0.10	22.24	3267.3	0.108	4.9	84.8	1.4	2.0	2.7	2.9	
01	-0.20	22.24	3353.4	0.116	9.8	93.3	2.9	3.9	5.3	5.8	
01	-0.30	22.24	3438.5	0.123	14.7	101.7	4.3	5.9	8.0	8.8	
01	-0.40	22.24	3522.7	0.130	19.6	110.2	5.7	7.8	10.7	11.7	
01	-0.50	22.24	3606.2	0.137	24.5	118.6	7.2	9.8	13.3	14.6	
01	-0.50	22.24	3606.2	0.137	24.5	118.6	7.2	9.8	13.3	14.6	
02	-0.50	30.47	3988.3	0.133	24.5	127.8	7.2	9.8	13.3	14.6	
02	-0.60	30.47	4072.7	0.140	31.2	136.5	9.1	12.4	17.0	18.6	
02	-0.70	30.47	4155.4	0.146	37.9	145.8	11.1	15.1	20.6	22.6	
02	-0.80	30.47	4236.4	0.153	44.6	155.6	13.1	17.8	24.3	26.6	
02	-0.90	30.47	4316.3	0.160	51.3	166.0	15.0	20.5	27.9	30.6	
02	-1.00	30.47	4395.0	0.168	58.0	177.0	17.0	23.1	31.6	34.6	
02	-1.00	30.47	4395.0	0.168	58.0	177.0	17.0	23.1	31.6	34.6	
03	-1.00	36.21	4850.0	0.161	58.0	187.9	17.0	23.1	31.6	34.6	
03	-1.10	36.21	4921.4	0.169	65.9	199.2	19.3	26.3	35.9	39.4	
03	-1.20	36.21	4988.1	0.176	73.9	210.9	21.7	29.5	40.3	44.1	
03	-1.30	36.21	5051.0	0.184	81.9	223.0	24.0	32.7	44.6	48.9	
03	-1.40	36.21	5110.6	0.192	89.8	235.4	26.3	35.8	49.0	53.6	
03	-1.50	36.21	5167.5	0.200	97.8	248.3	28.7	39.0	53.3	58.4	
03	-1.50	36.21	5167.5	0.200	97.8	248.3	28.7	39.0	53.3	58.4	
04	-1.50	40.67	5540.0	0.193	97.8	257.2	28.7	39.0	53.3	58.4	
04 04	-1.60 -1.70	40.67	5588.2 5634.4	0.202 0.210	106.8 115.7	270.3 283.7	31.3 33.9	42.6	58.2 63.1	63.7 69.1	
04	-1.80	40.67	5678.8	0.218	124.7	297.5	36.5	49.7	67.9	74.4	
04	-1.90	40.67	5721.9	0.227	133.6	311.7	39.1	53.3	72.8	79.8	
04	-2.00	40.67	5763.7	0.236	142.5	326.2	41.8	56.9	77.7	85.1	
04	-2.00	40.67	5763.7	0.236	142.5	326.2	41.8	56.9	77.7	85.1	
05	-2.00	44.33	6056.7	0.229	142.5	333.2	41.8	56.9	77.7	85.1	
05	-2.10	44.33	6091.9	0.238	152.3	348.0	44.6	60.8	83.0	90.9	
05	-2.20	44.33	6126.5	0.247	162.1	363.1	47.5	64.7	88.3	96.7	
05	-2.30	44.33	6160.6	0.256	171.8	378.5	50.3	68.6	93.6	102.6	
05	-2.40	44.33	6194.2	0.265	181.6	394.3	53.2	72.4	98.9	108.4	
05 05	-2.50	44.33 44.33 45.93	6227.5 6227.5	0.275	191.3 191.3	410.5 410.5	56.1 56.1	76.3 76.3	104.3 104.3	114.2 114.2	
06 06 06	-2.50 -2.60 -2.70	45.93 45.93	6431.7 6462.1 6492.2	0.269 0.278 0.288	191.3 201.4 211.5	415.4 431.7 448.2	56.1 59.0 62.0	76.3 80.4 84.4	104.3 109.8 115.3	114.2 120.2 126.3	
06	-2.80	45.93	6522.1	0.297	221.6	464.9	64.9	88.4	120.8	132.3	
06	-2.90	45.93	6551.7	0.306	231.7	481.7	67.9	92.5	126.3	138.3	
06	-3.00	45.93	6581.2	0.316	241.8	498.7	70.9	96.5	131.8	144.4	
06	-3.00	45.93	6581.2	0.316	241.8	498.7	70.9	96.5	131.8	144.4	
07	-3.00	47.43	6735.0	0.311	241.8	502.4	70.9	96.5	131.8	144.4	
07	-3.10	47.43	6763.9	0.320	252.3	519.5	73.9	100.7	137.5	150.6	
07	-3.20	47.43	6792.8	0.329	262.7	536.8	77.0	104.8	143.2	156.8	
07	-3.30	47.43	6821.5	0.339	273.1	554.2	80.0	109.0	148.9	163.1	
40	-19.60	70.91	13731.4	0.400	2483.7	1318.2	727.7	991.0	1353.6	1482.8	
40	-19.70	70.91	13747.8	0.400	2499.3	1319.8	732.3	997.2	1362.1	1492.1	
40	-19.80	70.91	13764.3	0.400	2514.9	1321.4	736.9	1003.5	1370.6	1501.4	
40 40	-19.90 -20.00	70.91 70.91	13780.9 13797.5	0.400	2530.5 2546.1	1323.0 1324.6	741.5 746.0	1009.7 1015.9	1379.1 1387.7	1510.7 1520.1	
40	-20.00	70.91	13797.5	0.400	2546.1	1324.6	746.0	1015.9	1387.7	1520.1	
41	-20.00	71.30	13880.0	0.400	2546.1	1332.5	746.0	1015.9	1387.7	1520.1	
41	-20.10	71.30	13896.6	0.400	2561.8	1334.1	750.6	1022.2	1396.2	1529.4	
41	-20.20	71.30	13913.2	0.400	2577.5	1335.7	755.2	1028.4	1404.7	1538.8	
41	-20.30	71.30	13929.7	0.400	2593.2	1337.2	759.8	1034.7	1413.3	1548.1	
41	-20.40	71.30	13946.1	0.400	2608.9	1338.8	764.4	1040.9	1421.8	1557.5	
41	-20.50	71.30	13962.5	0.400	2624.6	1340.4	769.0	1047.2	1430.4	1566.9	
41	-20.50	71.30	13962.5	0.400	2624.6	1340.4	769.0	1047.2	1430.4	1566.9	
42	-20.50	71.66	14045.0	0.400	2624.6	1348.3	769.0	1047.2	1430.4	1566.9	
42 42 42 42	-20.50 -20.60 -20.70 -20.80	71.66 71.66 71.66	14043.0 14061.3 14077.6 14093.8	0.400 0.400 0.400 0.400	2624.0 2640.3 2656.1 2671.9	1349.9 1351.4 1353.0	773.6 778.2 782.9	1053.5 1059.8 1066.1	1430.4 1439.0 1447.6 1456.2	1500.9 1576.3 1585.7 1595.1	
42 42	-20.90 -21.00	71.66 71.66	14110.1 14126.3	0.400	2687.6 2703.4	1354.6 1356.1	787.5 792.1	1072.4 1078.7	1464.8 1473.4	1604.5 1613.9	
42	-21.00	71.66	14126.3	0.400	2703.4	1356.1	792.1	1078.7	1473.4	1613.9	
43	-21.00	72.04	14208.3	0.400	2703.4	1364.0	792.1	1078.7	1473.4	1613.9	
43	-21.10	72.04	14224.4	0.400	2719.3	1365.5	796.7	1085.0	1482.0	1623.4	
43	-21.20	72.04	14240.5	0.400	2735.1	1367.1	801.4	1091.3	1490.6	1632.9	
43	-21.30	72.04	14256.6	0.400	2751.0	1368.6	806.0	1097.6	1499.3	1642.3	
43	-21.31	72.04	14258.0	0.400	2752.3	1368.8	806.4	1098.2	1500.0	1643.1	
											1

In the ULS-FOND column, we can see that the load value of 1500 kN in traction is reached at the depth of 21.31 m.

Superposed bearing capacity curves

