

PARTIE G : MODULE PIECOEF+

G.1.	INTRODUCTION	5
G.2.	ASPECTS THEORIQUES	6
	G.2.1. Modélisation du pieu	6
	G.2.2. Modélisation de la réaction du sol	7
	G.2.3. Mise en œuvre	8
	G.2.4. Calcul de flambement G.2.4.1. Introduction G.2.4.2. Formulation G.2.4.3. Prise en compte des déformations de 2 nd ordre	9 9 9 11
	G.2.5. Prise en compte des déformations d'effort tranchant	13
G.3.	MANUEL D'UTILISATION	14
	G.3.1. Gestion des pieux	14
	G.3.2. Onglet "Paramètres" G.3.2.1. Cadre "Type de calcul" G.3.2.2. Cadre "Paramètres du calcul"	15 15 18
	G.3.3. Onglet "Sol/pieu" G.3.3.1. Cadre "Définition des couches de sol" G.3.3.2. Cadre "Discrétisation du pieu"	20 21 22
	G.3.4. Onglet "Chargement extérieur sur le pieu" G.3.4.1. Cadre "Charges ponctuelles normales au pieu" G.3.4.2. Cadre "Déplacements imposés en tête de pieu" G.3.4.3. Cadre "Charge multiples en tête" G.3.4.4. Cadre "Charges réparties normales au pieu"	24 24 26 27 29
	G.3.5. Onglet "Déformée libre du sol g(z)" G.3.5.1. Cadre "Déformée libre du sol g(z)" G.3.5.2. Assistant g(z) selon l'Eurocode 7 G.3.5.3. Assistant d'importation d'une déformée Piecoef+	30 31 31 34
	G.3.6. Onglet "Déformée initiale du pieu y₀(z)"	35
	G.3.7.1 Calcul et Résultats G.3.7.1. Calcul G.3.7.2. Résultats G.3.7.3. Résultats dans le cas d'un chargement multiple en tête	36 36 42

G.4.	EXEMPLES DE CALCUL PIECOEF +	45
	G.4.1. Exemple 1 : Calcul d'un pieu soumis à un chargement (T, M) en tête	45
	G.4.1.1. Etape 1 : Pieu vertical et comportement du sol élastique	45
	G.4.1.2. Saisie des données	46
	G.4.1.3. Calcul et Résultats	52
	G.4.1.4. Etape 2 : Sol élastoplastique	57
	G.4.1.5. Etape 3 : Cas d'un pieu incliné	61
	G.4.2. Exemple 2 : Pieu soumis à une déformée latérale g(z) du sol	64
	G.4.2.1. Etape 1 : Comportement élastoplastique et courbe g(z)	64
	G.4.2.2. Saisie des données	64
	G.4.2.3. Calcul et Résultats	71
	G.4.2.4. Variante de calcul avec un pieu plus souple	73
	G.4.2.5. Etape 2 : Saisie manuelle de la loi de mobilisation	75
	G.4.3. Exemple 3 : Calcul d'un puits métallique sous chargement	
	multiple en tête	79
	G.4.3.1. Saisie des données	79
	G.4.3.2. Onglet "Paramètres"	81
	G.4.3.3. Onglet "Sol/Pieu"	82
	G.4.3.4. Onglet "Déformée libre du sol"	84
	G.4.3.5. Calcul et Résultat	84
	G.4.3.6. Etape 2 : Prise en compte des déformations d'effort tranchant	87
	G.4.4. Exemple 4 : Flambement et 2 nd ordre : étude de flambement d'un	
	micropieu	91
	G.4.4.1. Etape 1 : Calcul de flambement	92
	G.4.4.2. Etape 2 : Quantification des effets de 2 ^{na} ordre sous l'effet d'un	
	chargement latéral	97

TABLE DES FIGURES

Figure G.1	: Modèle Piecoef+	5
Figure G.2	: Loi de mobilisation de la réaction latérale	7
Figure G.3	: Flambement	9
Figure G.4	: Modes de flambement et charges critiques associées	10
Figure G.5	: Déformation de 2 nd ordre sous l'effet d'un effort axial	11
Figure G.6	: Gestion des pieux dans le module Piecoef+	14
Figure G.7	: Onglet "Paramètres"	15
Figure G.8	: Loi de mobilisation de la réaction latérale du sol : "à partir des données pressiométriques (élastique)"	16
Figure G.9	: Loi de mobilisation de la réaction latérale du sol : "à partir des données pressiométriques (élastoplastique)"	16
Figure G.10	: Loi de mobilisation de la réaction latérale du sol : "avec saisie manuelle 2 paliers"	17
Figure G.11	: Loi de mobilisation de la réaction latérale du sol : "avec saisie manuelle 3 paliers"	18
Figure G.12	: Incrémentation du chargement	19
Figure G.13	: Onglet "Sol/Pieu"	20
Figure G.14	: Figure d'aide illustrant les paramètres de la loi de comportement "manuelle" à 3 paliers	22
Figure G.15	: Valeurs de k à prendre en compte pour le calcul de la section réduite S' pour quelques cas courants	23
Figure G.16	: Onglet "Chargement exérieur sur le pieu"	24
Figure G.17	: Onglet "Chargement exérieur sur le pieu" – Charges ponctuelles normales au pieu	25
Figure G.18	: Aide à la définition des charges	25
Figure G.19	: Onglet "Chargement exérieur sur le pieu" – Déplacements imposés en tête du pieu	26
Figure G.20	: Onglet "Chargement exérieur sur le pieu" – Charges multiples en tête	27
Figure G.21	: Assistant d'importation de cas de charge issus du module Groupie	28
Figure G.22	: Onglet "Chargement exérieur sur le pieu" – Charges réparties normales au pieu	29
Figure G.23	: Exemple de développement d'une déformée libre g(z)	30
Figure G.24	: Onglet "Déformée libre du sol g(z)"	30
Figure G.25	: Représentation graphique de la déformée libre g(z)	31
Figure G.26	: Fonction g(z) - Courbes 1 et 2 telles que définies dans l'Eurocode 7	32
Figure G.27	: Assistant g(z) selon l'Eurocode 7	32
Figure G.28	: Assistant d'importation d'une déformée Piecoef+	34
Figure G.29	: Représentation graphique de la déformée initiale y ₀ (z)	35
Figure G.30	: Fenêtre Résultats	36
Figure G.31	: Résultats numériques formatés (rappel des données)	37
Figure G.32	: Résultats numériques formatés (début de la section des résultats)	38
Figure G.33	: Résultats numériques formatés (début de la section des résultats dans le cas	20
E '	d'un calcul de llambément)	
Figure G.34	: Résultats numériques – Tableaux de résultats	39
Figure G.34 Figure G.35	: Résultats numériques – Tableaux de résultats : Résultats graphiques – Courbes principales	39 39 40
Figure G.34 Figure G.35 Figure G.36	 a un calcul de nambernent) : Résultats numériques – Tableaux de résultats : Résultats graphiques – Courbes principales : Paramètres Groupie 	39 40 41
Figure G.34 Figure G.35 Figure G.36 Figure G.37	 a un calcul de hambement)	39 40 41 41
Figure G.34 Figure G.35 Figure G.36 Figure G.37 Figure G.38	 a un calcul de hambement)	39 40 41 41 41
Figure G.34 Figure G.35 Figure G.36 Figure G.37 Figure G.38 Figure G.39	 a un calcul de hambement)	39 40 41 41 42 43

TABLE DES TABLEAUX

Tableau G.1	: Onglet "Paramètres" : Cadre "Paramètres de calcul"	18
Tableau G.2	: Onglet "Paramètres" : "Incrémentation du chargement"	19
Tableau G.3	: Onglet "Sol/Pieu" : Cadre "Définition des couches de sol"	21
Tableau G.4	: Onglet "Sol/Pieu" : Cadre "Définition des couches de sol" – Données requises en fonction du type de calcul choisi	22
Tableau G.5	: Onglet "Sol/Pieu" : Cadre "Discrétisation du pieu"	23
Tableau G.6	: Onglet "Chargement extérieur sur le pieu" : Cadre "Charges ponctuelles normales au pieu"	25
Tableau G.7	: Onglet "Chargement extérieur sur le pieu" : Cadre "Déplacement imposée en tête de pieu"	26
Tableau G.8	: Onglet "Chargement extérieur sur le pieu" : Cadre "Charge multiples en tête"	27
Tableau G.9	: Onglet "Chargement extérieur sur le pieu" : Cadre "Charges réparties normales au pieu"	29
Tableau G.10	: Onglet "Déformée libre du sol g(z)" Cadre "Déformée libre du sol g(z)"	31
Tableau G.11	: Assistant g(z) : Cadre "Définition de l'horizon compressible"	33
Tableau G.12	: Assistant g(z) : Cadre "Définition adimensionnelle"	33
Tableau G.13	: Assistant g(z) : Cadre "Amplitude"	33
Tableau G.14	: Onglet "Déformée libre du sol g(z)" Cadre "Déformée libre du sol g(z)"	35

G.1. Introduction

Le module Piecoef+ permet de modéliser, de manière affinée, le comportement d'un pieu isolé sous sollicitations latérales en se basant sur un modèle de poutre sur appuis élastoplastiques (modèle de type « p-y »)..

Figure G.1 : Modèle Piecoef+

Il s'applique au cas d'un pieu d'inertie variable, dans un sol multicouche de comportement élastoplastique, sous différentes conditions de chargement.

Il permet la prise en compte de la plastification du sol, d'une déformée libre de type "g(z)" ainsi que de la contribution des déformations d'effort tranchant.

La méthode utilisée offre également la possibilité d'évaluer les efforts critiques de flambement et les suppléments d'efforts et de déformation de 2nd ordre sous l'effet d'un effort axial.

Enfin, Piecoef+ permet de calculer la matrice de raideur en tête d'un pieu, ce qui peut constituer par exemple l'étape préalable à un calcul Groupie de groupe de pieux.

G.2. Aspects théoriques

G.2.1. Modélisation du pieu

Le pieu est assimilé à une poutre de comportement élastique linaire. On se place dans le cas de poutres de section homogène ce qui permet de dissocier le comportement en flexion de celui en traction/compression.

Le comportement en flexion de la poutre représentative du pieu peut être abordé à l'aide du modèle dit de Bernoulli qui consiste à négliger la contribution des déformations d'effort tranchant (cisaillement). Avec cette hypothèse, la combinaison des équations d'équilibre et de comportement conduit à l'équation générale suivante :

$$EI\frac{d^{4}y(z)}{dz^{4}} = q(z) - r(z)$$
(1)

Avec :

- y(z) le déplacement latéral du pieu
- EI(z) le produit d'inertie
- q(z) densité de chargement latéral sur le pieu (autre que la réaction du sol)
- r(z) densité de réaction du sol

La résolution de cette équation peut être menée numériquement en discrétisant le pieu en éléments finis de poutre. On utilise pour cela des éléments "classiques" à 2 nœuds et 4 degrés de liberté : deux déplacements et deux rotations. En tout point, la rotation de la poutre coïncide avec la dérivée du champ de déplacement latéral (approximation de Bernoulli). Dans le cadre de cette discrétisation, l'équilibre du pieu se traduit par un système matriciel équivalent de taille $2(p+1) \times 2(p+1)$ où p désigne le nombre total d'éléments :

$$\mathbf{K}^{\mathbf{e}}.\mathbf{y} = \mathbf{F}^{\mathbf{ext}} - \mathbf{R}^{\mathbf{s}}$$
(2)

Avec :

- K^e: matrice de rigidité du pieu constituée par assemblage des matrices de rigidité élémentaires;
- **F**^{ext} : vecteur chargement relatif aux charges latérales sur le pieu autres que la réaction du sol ;
- **R**^s : vecteur chargement relatif à la réaction du sol ;
- y : vecteur déplacement équivalent constitué par le déplacement et la rotation en chaque nœud.

G.2.2. Modélisation de la réaction du sol

Chaque couche de sol est assimilée à une distribution de ressorts juxtaposés de comportement élastoplastique selon une loi de mobilisation à trois paliers comme le schématise la figure ci-dessous.

Figure G.2 : Loi de mobilisation de la réaction latérale

Comme l'indique la figure ci-dessus, la loi de mobilisation de la réaction latérale s'exprime en fonction du déplacement <u>relatif</u> du pieu par rapport au sol. Cela permet de traiter directement le cas d'une déformée libre g(z) se développant dans une ou plusieurs couches de sol. Selon les notations de la figure ci-dessus, la réaction latérale du sol r(z) s'exprime ainsi :

$$r = \alpha [y - g] + \beta$$

Avec :

- Pour le 1^{er} palier : $\alpha = Es_1$ & $\beta = 0$;
- Pour le 2^e palier : $\alpha = Es_2$ & $\beta = p_1 \left(1 \frac{Es_2}{Es_1}\right);$
- Pour le 3^e palier : $\alpha = 0$ & $\beta = p_2$;

Dans le cadre de la discrétisation du modèle éléments finis retenu pour le pieu, le vecteur réaction du sol s'exprime ainsi selon la formule générale suivante :

$$\mathbf{R}^{s} = \mathbf{K}^{s} \cdot (\mathbf{y} - \mathbf{g}) + \mathbf{c}^{e}$$
(3)

Où :

- **K**^s : matrice de rigidité du sol correspondant à la part élastique de la courbe de mobilisation dans chaque élément ;
- c^e: vecteur chargement équivalent correspondant à la part "constante" de la courbe de mobilisation dans chaque élément ;
- g : vecteur déplacement équivalent correspondant à la déformée libre du sol.

La combinaison des équations (2) et (3) conduit à la formulation globale du système "pieu + sol" :

$$(\mathbf{K}^{s} + \mathbf{K}^{e}).\mathbf{y} = \mathbf{F}^{ext} + \mathbf{K}^{s}.\mathbf{g} - \mathbf{c}^{e}$$
 (4)

La gestion de la plastification du sol est conduite par un processus itératif durant lequel les termes \mathbf{K}^{s} et \mathbf{c}^{e} évoluent jusqu'à l'obtention d'une solution compatible, en tout point du pieu, avec la loi de mobilisation de la réaction latérale du sol.

G.2.3. Mise en œuvre

La mise en œuvre du modèle repose sur la constitution et la résolution du système d'équations (4). Les éléments de ce système peuvent être complétés par les conditions d'appui introduites en n'importe quel point du pieu sous la forme d'un appui élastique ponctuel caractérisé par une raideur en translation latérale et une raideur en rotation.

La résolution du système final permet d'obtenir les déplacements, rotations, et réactions en tout point du pieu. Connaissant les réactions, les moments M et efforts tranchants T sont calculés ensuite par intégration selon la formule générale suivante :

$$T(z) = \int_0^z [q(t) - r(t)] dt + T(0)$$
$$M(z) = \int_0^z T(t) dt + M(0)$$

Le modèle permet également de définir un système de raideur <u>tangente</u> équivalente en tête du pieu qui sert ensuite de paramètre d'entrée à un calcul d'équilibre global d'une semelle sur pieux avec le module Groupie. Le système de raideurs en tête se compose d'une "matrice" de raideur 2 x 2 symétrique et un terme "constant" selon la formule générale suivante :

$$\begin{pmatrix} T \\ M \end{pmatrix}_{t \in t e} = \begin{pmatrix} \rho_1 & \rho_2 \\ \rho_2 & \rho_3 \end{pmatrix} \begin{pmatrix} y \\ \omega \end{pmatrix}_{t \in t e} + \begin{pmatrix} T_0 \\ M_0 \end{pmatrix}$$

G.2.4. Calcul de flambement

G.2.4.1. Introduction

Le flambement est la survenue d'une déformée latérale non nulle sous l'effet d'un chargement axial et en l'absence de tout chargement latéral. Cette forme d'instabilité élastique apparaît à des valeurs précises de l'effort axial ainsi appliqué dites "efforts de flambement". La valeur minimale de ces efforts est appelée "effort critique de flambement".

Figure G.3 : Flambement

Il existe une analogie directe entre le flambement en tant qu'instabilité élastique et la "résonance" en tant qu'instabilité dynamique qui apparaît pour des valeurs précises de la fréquence d'excitation.

L'approche introduite dans Piecoef+ s'appuie sur cette analogie et conduit la recherche des efforts de flambement selon la méthode de valeurs propres en bénéficiant de la formulation matricielle issue de la discrétisation en éléments finis.

G.2.4.2. Formulation

On considère le cas d'un pieu soumis à deux efforts de compression opposés sur ses deux extrémités. L'équilibre latéral de 2nd ordre du pieu se traduit par l'équation :

$$EI\frac{d^4y(z)}{dz^4} + F\frac{d^2y(z)}{dz^2} = q(z) - r(z)$$
(5)

On cherche les valeurs de F permettant d'obtenir une solution non nulle y(z) de cette équation en l'absence de tout chargement latéral sur le pieu q(z) = 0. On se place dans le cas d'un comportement localement élastique du sol (r = Es.y), ce qui nous conduit à l'équation suivante :

$$EI\frac{d^4y(z)}{dz^4} + Es.y(z) + F\frac{d^2y(z)}{dz^2} = 0$$
(6)

En adoptant le modèle éléments finis présenté précédemment, l'équation (6) se traduit par un système matriciel équivalent :

$$\left(\mathbf{K}^{s} + \mathbf{K}^{e}\right) \cdot \mathbf{y} - F \cdot \mathbf{M} \cdot \mathbf{y} = \mathbf{0}$$
(7)

Avec :

- **K**^s : matrice de rigidité du sol (1^{er} ordre)
- **K**^e : matrice de rigidité du pieu (1^{er} ordre)
- **M** : matrice de "rotations" (2nd ordre)

Le système (7) peut être réécrit de la manière suivante :

$$\mathbf{A} \cdot \mathbf{y} = F \cdot \mathbf{y} \text{ avec } \mathbf{A} = \mathbf{M}^{-1} \cdot \left(\mathbf{K}^{s} + \mathbf{K}^{e} \right)$$
(8)

Par définition, F est un effort de flambement si et seulement si l'équation (6) et donc (8) admet une solution non nulle y. Mathématiquement, cela signifie que F est une valeur propre de la matrice A. Ainsi, pour rechercher les efforts de flambement du système "pieu + sol", il suffit de rechercher les valeurs propres de la matrice A associée. L'effort critique de flambement n'est ensuite autre que la plus petite valeur propre de la matrice A.

Le programme Piecoef+ constitue ainsi automatiquement la matrice A, et fournit à la sortie l'ensemble de ses valeurs propres (= efforts de flambement) ainsi que les vecteurs propres associés (déformées caractéristiques des mécanismes de flambement potentiels).

Figure G.4 : Modes de flambement et charges critiques associées

Ce calcul complémentaire est mené à la fin du processus itératif de résolution d'équilibre du pieu. Il tient ainsi compte de la rigidité du pieu, des conditions d'appui éventuelles, ainsi que de la part élastique (Es1 ou Es2) de la réaction du sol obtenue à l'équilibre sous les conditions de chargement considérées. En particulier, dans les zones où le sol est entièrement plastifié (3^e palier), aucune réaction complémentaire n'est prise en compte.

Les résultats obtenus sont identiques à ceux issus de la bibliographie pour des cas simples (Souche, Mandel, Euler...) ou à ceux obtenus par traitement numérique "pas à pas" en grandes déformations.

G.2.4.3. Prise en compte des déformations de 2nd ordre

La recherche des efforts de flambement et des déformées associées peut servir de base à l'estimation des déformations de 2nd ordre générées dans le pieu sous l'effet d'un effort axial.

On considère le cas d'un pieu présentant initialement une déformée y₀ non nulle correspondant soit à un chargement latéral soit par exemple à un défaut de forme. Ce pieu est ensuite soumis à un effort axial supposé entièrement récupéré en pointe (approche sécuritaire). L'application de l'effort F conduit à un supplément de déformation de 2nd ordre "y" comme le schématise la figure suivante.

Figure G.5 : Déformation de 2nd ordre sous l'effet d'un effort axial

L'équilibre de 2nd ordre du pieu s'écrit ainsi :

$$EI\frac{d^{4}y}{dz^{4}} + E_{s}y + F\frac{d^{2}}{dz^{2}}(y + y_{0}) = 0$$
(9)

La discrétisation du pieu en éléments finis permet d'exprimer l'équation précédente sous la forme d'un système matriciel homogène sans second membre :

$$\left(\mathbf{K}^{s} + \mathbf{K}^{e}\right) \cdot \mathbf{y} - F \cdot \mathbf{M} \cdot \left(\mathbf{y} + \mathbf{y}_{0}\right) = \mathbf{0}$$
(10)

Soit avec les notations du système (8) :

$$\mathbf{A}.\mathbf{y} = F.(\mathbf{y} + \mathbf{y}_0) \tag{11}$$

En l'absence de déformée initiale ($y_0 = 0$), on retrouve le système (8) vérifié par les efforts de flambement notés F_i et les déformées associées notées \mathbf{y}_i^c qui ne sont autres que les vecteurs propres de la matrice \mathbf{A} :

$$\mathbf{A}.\mathbf{y}_{i}^{c} = F_{i}.\mathbf{y}_{i}^{c}$$
(12)

La matrice **A** étant définie positive, ses vecteurs propres forment une base orthogonale selon laquelle il est possible de décomposer tout vecteur du même espace. En particulier, la solution "**y**" de l'équation (11) et la déformée initiale "**y**₀" peuvent ainsi s'exprimer comme suit :

$$\mathbf{y} = \sum_{i=1}^{n} \alpha_i \, \mathbf{y}_i^c \quad \& \quad \mathbf{y}_0 = \sum_{i=1}^{n} \alpha_i^0 \, \mathbf{y}_i^c \tag{13}$$

Les α_i étant les inconnues du problème, tandis que les α_i^0 sont connus et peuvent être évalués par projection selon la formule suivante :

$$\boldsymbol{\alpha}_{i}^{0} = \frac{{}^{t} \mathbf{y}_{i}^{c} \cdot \mathbf{y}_{0}}{\left\| \mathbf{y}_{i}^{c} \right\|^{2}}$$

En combinant les équations (11), (12) et (13) on aboutit au système suivant :

$$\sum_{i=1}^{n} \alpha_i F_i \mathbf{y}_i^c = F \sum_{i=1}^{n} \left(\alpha_i + \alpha_i^0 \right) \mathbf{y}_i^c$$
(14)

Soit, en projetant selon chacun des \mathbf{y}_i^c :

$$\alpha_i F_i = F(\alpha_i + \alpha_i^0) \qquad i = 1..n$$
(15)

Ou encore :

$$\alpha_i = \frac{F}{F_i - F} \alpha_i^0 \qquad \qquad i = 1..n \tag{16}$$

On en déduit donc l'expression de la déformée "résultante" tenant compte des termes de 2nd ordre :

$$\mathbf{y} + \mathbf{y}_0 = \sum_{i=1}^n \left(\alpha_i + \alpha_i^0 \right) \mathbf{y}_i^c = \sum_{i=1}^n \frac{F_i}{F_i - F} \alpha_i^0 \mathbf{y}_i^c$$
(17)

Ainsi, selon chaque déformée propre \mathbf{y}_i^c , la déformée résultante présente une amplification

par rapport à la déformée initiale d'un facteur égal
$$\frac{F_i}{F_i - F} > 1$$
 dit facteur d'amplification.

On constate en particulier que quand F tend vers l'une des valeurs de F_i, le facteur d'amplification correspondant tend vers l'infini. Le pieu périt ainsi en flexion composée avant que l'effort critique de flambement ne soit atteint.

Ces développements ont fait l'objet d'une publication dans le cadre des JNGG 2012 (F. Cuira – Une méthode simple pour l'étude du flambement d'un pieu souple dans un sol multicouche – JNGG Bordeaux 2012).

G.2.5. Prise en compte des déformations d'effort tranchant

L'ensemble des développements présentés précédemment s'appuie sur une discrétisation du pieu en éléments de poutre mince. L'hypothèse des poutres minces est implicitement introduite dans l'adoption du modèle de Bernoulli qui consiste à négliger la contribution des déformations de cisaillement (effort tranchant). La validité de cette hypothèse exige un rapport longueur/diamètre du pieu au moins supérieur à 10 en général voire 20 dans certaines conditions d'appui. Le cas d'un pieu "court" ou rigide et de manière générale le cas d'un pieu dont les déformations de cisaillement ne peuvent être négligées devant celles de flexion, nécessite le recours à un modèle de comportement adapté aux poutres épaisses, dit de "Timoshenko".

La mise en équation de ce modèle nécessite de définir, en plus du produit d'inertie, la rigidité au cisaillement notée GS'. Pour un pieu de section homogène, celle-ci peut être estimée par le produit du module du cisaillement G et de la section "réduite" S' (voir la notice d'utilisation, chapitre G.3.3.2). La combinaison des équations d'équilibre et de comportement conduit au système d'équations suivant :

$$GS' \frac{d}{dz} \left(\theta - \frac{dy}{dz} \right) = q(z) - r(z)$$

$$GS' \left(\theta - \frac{dy}{dz} \right) + EI \frac{d^2 \theta}{dz^2} = 0$$
(18)

Où θ désigne la distorsion (ou rotation) qui, contrairement au modèle de Bernoulli, ne coïncide plus avec la dérivée première du déplacement latéral *y*.

La résolution de ce système est menée numériquement en introduisant une discrétisation du pieu en éléments de poutre épaisse. Les éléments utilisés sont des éléments à 2 nœuds et 8 degrés de liberté : deux déplacements, deux rotations ainsi que leurs 4 dérivées premières respectives.

Dans le cadre de cette discrétisation, l'équilibre du pieu se traduit par un système matriciel similaire à (2), de taille 4(p+1) x 4(p+1) où p désigne le nombre total d'éléments.

G.3. Manuel d'utilisation

On présente dans ce chapitre :

• les paramètres d'entrée du module Piecoef+.

Certaines zones ne peuvent recevoir que des données ayant une signification physique (par exemple, un module de rigidité El doit toujours être strictement positif).

La fenêtre d'entrée des paramètres de calcul Piecoef+ est constituée de 4 onglets distincts. Les données à compléter sur chaque onglet dépendent parfois de certains choix effectués par l'utilisateur : par exemple, les données à compléter pour un calcul de pieu sous sollicitations latérales ne sont pas toutes les mêmes que pour un calcul spécifique de flambement.

Nota : il est possible, dans le module Piecoef+, de traiter un pieu unique, ou plusieurs pieux correspondant à des configurations différentes de pieux pour un même projet (voir le chapitre G.3.1 ci-dessous).

• les résultats fournis par le module Piecoef+. Là aussi, ils dépendent en partie des données saisies par l'utilisateur, et notamment du type de calcul.

Ce chapitre ne détaille pas l'interface utilisateurs proprement dite et ses manipulations (boutons, menus, etc) : ces aspects sont traités dans la partie C du manuel.

G.3.1. Gestion des pieux

Le module Piecoef+ permet de traiter un ou plusieurs pieux dans le cadre d'un projet Foxta donné, mais l'utilisateur ne peut travailler que sur un de ces pieux à la fois : le pieu "actif" est affiché au-dessus des onglets de la fenêtre de saisie des données.

- Lors de la première ouverture du module Piecoef+ pour un projet donné, le module comporte un seul pieu (Pieu 1/1). L'utilisateur doit donc compléter ce premier pieu, et peut ensuite, si nécessaire, créer des pieux supplémentaires (voir ci-dessous).
- Lors de l'ouverture d'un module Piecoef+ déjà complété, le pieu affiché par défaut est le pieu 1/n (n étant le nombre total de pieux déjà créés dans le module). Il est ensuite possible de sélectionner un autre pieu, d'ajouter des pieux ou d'en supprimer.

Pieu 1/2 : Exemple 01a Pieu 1/2 : Exemple 01a Parametros O Parametros O Déformée libre du sol g(z)	
- Type de calcul	Paramètres généraux

Figure G.6 : Gestion des pieux dans le module Piecoef+

Les manipulations possibles sur les pieux dans le module Piecoef+ sont les suivantes :

- Ajout d'un pieu : cliquer sur le bouton 🔮 : Foxta ajoute un nouveau pieu au projet, indépendant du précédent, avec les mêmes champs de saisie. Son numéro sera automatiquement incrémenté.
- Pour dupliquer le pieu courant, cliquer sur le bouton : Foxta ajoute au projet un pieu identique au pieu courant. Les données sont dupliquées dans ce nouveau pieu mais elles restent modifiables.

- Pour supprimer le pieu courant, cliquer sur le bouton
- Pour afficher le pieu suivant ou le pieu précédent, cliquer sur le bouton < ou sur 🕨.

Comme indiqué précédemment, on ne peut "travailler" que sur un pieu à la fois : la démarche d'utilisation est donc de sélectionner le pieu voulu, compléter/modifier ses données, lancer le calcul puis afficher les résultats pour ce pieu. L'utilisateur peut ensuite sélectionner un autre pieu existant ou créer un autre pieu, et répéter ces opérations.

Les chapitres suivants décrivent l'utilisation de Piecoef+ pour un pieu donné.

G.3.2. Onglet "Paramètres"

-		\$ Rieu 1/1 : Titre du calcul 🕨 💽
1		👽 Paramètres 🔽 Sol/pieu 🔍 Chargement extérieur sur le pieu 🔍 Déformée libre du sol g(z)
5 10		
5		Calcul de pieu sous sollicitations latérales
-	Cote de référence : 0.0 m	
		à partir des données pressiométriques (élastoplastique)
-10	-7.0 m -10.0 m	
-1		cas où les solicitations accidentelles très brèves en tête dominent
-2		
· · · · · · · · · · · · · · · · · · ·		Paramètres du calcul
5	érents Ontions	Titre du calcul Titre du calcul Cote de référence (m) 0,00 \$ Angle d'indinaison du pieu (*) 0,00 \$
s	/mb. Désignation Visible 🖉 💽 🔍 🖓 😭	Famille du pieu Pas de famille Important (Incrémentation du chargement) (Incrémentation du chargement) (Incrémentation du chargement)
E	Pieu II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Lancement du calcul

Figure G.7 : Onglet "Paramètres"

G.3.2.1. Cadre "Type de calcul"

Le cadre **Type de calcul** permet de sélectionner plusieurs options, grâce à 3 niveaux de choix (cf Figure G.7). Le premier niveau de choix fixe le cadre du calcul, les deux suivants contrôlent le mode de définition des lois de mobilisation de la réaction latérale du sol.

G.3.2.1.1. Calcul de pieu sous sollicitations latérales

C'est le mode de calcul de base (par défaut), qui permet la modélisation d'un pieu ancré dans un sol de comportement élastoplastique, et soumis à l'application des différentes conditions de chargement latéral (charges ponctuelles, réparties, déformée libre g(z), effets de 2nd ordre sous l'effet d'un effort axial...).

Ensuite, quatre possibilités sont proposées pour la caractérisation de la loi de mobilisation de la réaction latérale du sol :

⇒ <u>A partir des données pressiométriques (élastique)</u>: loi de mobilisation élastique caractérisée par un coefficient de réaction ks (kPa/m) défini à partir des paramètres pressiométriques :

Figure G.8 : Loi de mobilisation de la réaction latérale du sol : "à partir des données pressiométriques (élastique)"

Où E_M désigne le module pressiométrique, α le coefficient rhéologique, B le diamètre (équivalent) du pieu, et B₀ diamètre de référence pris égal à 0,6 m. Le paramètre β dépend du type de sollicitations et est contrôlé par le 3^{ème} niveau de choix disponible :

- Sous sollicitations permanentes : $\beta = 1$
- Sous sollicitations de courte durée : $\beta = 2$
- ⇒ <u>A partir des données pressiométriques (élastoplastique)</u>: loi de mobilisation élastoplastique à trois paliers caractérisée à partir des valeurs pressiométriques selon la figure suivante :

Le 3^{ème} niveau de choix permet de fixer les valeurs de β_1 , β_2 , p_1 et p_2 en fonction du type de sollicitations :

Type de sollicitations	β1	β₂	р1	p2
Cas où les sollicitations permanentes dominent en tête	1	0		p _f *
Cas où les sollicitations dues aux poussées latérales du sol dominent		1/2	- *	pı*
Cas où les sollicitations de courte durée en tête dominent	2	0	p _f "	p _f *
Cas où les sollicitations accidentelles très brèves en tête dominent		1		pı*

Où $\mathbf{p_f}^*$ et $\mathbf{p_l}^*$ désignent respectivement la pression de fluage <u>nette</u> et la pression limite <u>nette</u> du sol issues de l'essai pressiométrique. Notons que pour le cas où p1 = p2, on a $\beta_2 = 0$ et on se ramène donc à une courbe de mobilisation à deux paliers (élastique parfaitement plastique).

⇒ <u>Avec saisie manuelle 2 paliers</u> : cette option permet de définir une loi de mobilisation « manuelle » à deux paliers (élastique parfaitement plastique) en entrant directement les valeurs de ks et pmax comme le montre la figure ci-dessous :

Figure G.10 : Loi de mobilisation de la réaction latérale du sol : "avec saisie manuelle 2 paliers"

⇒ <u>Avec saisie manuelle 3 paliers</u> : cette option permet de définir une loi de mobilisation « manuelle » à trois paliers (deux pentes et un palier de plastification) en entrant directement les valeurs de ks₁, ks₂, p₁ et p₂ comme le montre la figure suivante.

Figure G.11 : Loi de mobilisation de la réaction latérale du sol : "avec saisie manuelle 3 paliers"

<u>Nota</u> : Piecoef+ ne tient pas compte de l'effet de groupe. Il appartient à l'utilisateur d'adapter les lois de mobilisation ou les caractéristiques des couches afin de simuler cet effet.

G.3.2.1.2. Calcul spécifique de flambement

Il s'agit d'un mode de calcul spécifique au calcul de la charge critique de flambement et du mécanisme de ruine associé, sachant que ce résultat est également accessible depuis un "calcul sous sollicitations latérales". L'intérêt de cette option est de ne demander à l'utilisateur que les données nécessaires au calcul de flambement.

Ce calcul est conduit en considérant une réponse apparente élastique du sol. Celle-ci est caractérisée par un coefficient de réaction pouvant être estimé de deux manières :

- \Rightarrow A partir des données pressiométriques (élastique) : avec ks = ks_{ref}.
- \Rightarrow Avec saisie manuelle (élastique)

G.3.2.2. Cadre "Paramètres du calcul"

Le cadre Paramètres du calcul permet de saisir les éléments suivants :

Désignation	Unité	Valeur par défaut	Condition d'affichage	Valeur obligatoire	Contrôles locaux
Titre du calcul	-	-	Toujours	Oui	-
Cote de référence	m	0,00	Toujours	Oui	-
Angle d'inclinaison du pieu (par rapport à la verticale)	o	0,00	Toujours	Oui	-
Famille du pieu	-	"Pas de famille"	Toujours	Oui	-

Tableau G.1 : Onglet "Paramètres" : Cadre "Paramètres de calcul"

La donnée "Famille du pieu" est utile dans le cadre d'un calcul de groupe de pieux en combinaison avec le module Groupie. Dans ce cas, la famille permet d'identifier une configuration de pieu et de l'utiliser dans le cadre du calcul Groupie (voir aussi le manuel Groupie – Partie H, et notamment ses exemples tutoriels).

Le bouton "Incrémentation du chargement" dans le cadre "Paramètres du calcul" permet d'accéder à la fenêtre suivante :

Incrémentation du chargement	×
Nombre d'incréments	20 🗘
Nombre d'itérations maximal par incrément	100 🗘
OK Annule	r

Figure G.12 : Incrémentation du chargement

Ces paramètres permettent de contrôler le processus itératif relatif à la gestion de la plastification du sol :

- Le chargement extérieur sur le pieu est subdivisé en plusieurs « incréments » (20 par défaut) ;
- Pour chaque incrément, le niveau de mobilisation de la réaction du sol dans chaque élément est ajusté par processus itératif (limité par défaut à 100 itérations).

Désignation	Unité	Valeur par défaut	Condition d'affichage	Valeur obligatoire	Contrôles locaux
Nombre d'incréments	-	20	Toujours	Oui	-
Nombre d'itérations maximal par incrément	-	100	Toujours	Oui	-

Tableau G.2 : Onglet "Paramètres" : "Incrémentation du chargement"

Les valeurs proposées par défaut sont suffisantes pour la grande majorité des situations. Néanmoins, la convergence des calculs peut être contrôlée par l'utilisateur en s'assurant qu'une augmentation des valeurs par défaut proposées n'impacte pas les résultats. Dans le cas contraire, il convient d'augmenter le nombre d'incréments.

G.3.3. Onglet "Sol/pieu"

Figure G.13 : Onglet "Sol/Pieu"

Cet onglet comporte le cadre de définition des couches de sols et le cadre de définition du pieu et de sa discrétisation du pieu.

Foxta offre la possibilité d'enregistrer les couches de sol dans la base de données des sols du projet et/ou dans la base de données globale des sols en cliquant sur le bouton

Ceci permet d'enregistrer les couches de sol avec leurs paramètres et d'éviter de les ressaisir lors de la création d'un nouveau pieu dans le module Piecoef+ ou d'un autre projet Foxta.

L'utilisation de la base de données des sols est décrite en détail dans la partie C du manuel.

G.3.3.1. Cadre "Définition des couches de sol"

Il s'agit de définir ici la coupe de sol au niveau du pieu étudié : le premier tableau ci-dessous liste l'ensemble des paramètres de sol, indépendamment du type de calcul choisi. La correspondance entre le type de calcul choisi et les données effectivement à compléter est donnée dans le second tableau ci-dessous.

IMPORTANT : par convention, la base des pieux est supposée définie dans Piecoef+ au même niveau que la base de la dernière couche de sol. Pour définir par exemple un pieu de 12 m de longueur, il faut définir la coupe de sol jusqu'à 12 m de profondeur.

Désignation des paramètres	Unité	Valeur par défaut	Condition d'affichage	Valeur obligatoire	Contrôles locaux
Z_{base} : cote de base de la couche	m	1 m plus bas que la base de la couche au-dessus	Toujours	Oui si affichée	Valeurs distinctes et décroissantes avec la profondeur
E _M : module pressiométrique	kPa	-	Selon type de calcul	Oui si affichée	> 0
α : coefficient rhéologique de Ménard	-	-	Selon type de calcul	Oui si affichée	$0 < \alpha \le 1$
B : diamètre de forage	m	-	Toujours	Oui si affichée	> 0
\mathbf{P}_{f}^{\star} : pression de fluage nette	kPa	-	Selon type de calcul	Oui si affichée	> 0
P I* : pression limite nette	kPa	-	Selon type de calcul	Oui si affichée	≥ P _f
$\mathbf{K}_{\mathbf{s}}$: coefficient de réaction du sol	kPa/m	-	Selon type de calcul	Oui si affichée	≥ 0
P _{max} : pression de plastification du sol	kPa	-	Selon type de calcul	Oui si affichée	≥ 0
K _{s1} : coefficient de réaction du sol au 1 ^{er} palier	kPa/m	-	Selon type de calcul	Oui si affichée	> 0 et ≥ K _{s2}
P ₁ : pression de plastification du sol au 1 ^{er} palier	kPa	-	Selon type de calcul	Oui si affichée	$\geq 0 \text{ et} \leq P_2$
K_{s2} : coefficient de réaction du sol au 2 ^{ème} palier	kPa/m	-	Selon type de calcul	Oui si affichée	≥ 0
P_2 : pression de plastification du sol au 2 ^{ème} palier	kPa	-	Selon type de calcul	Oui si affichée	≥ 0

Tableau G.3 : Onglet "Sol/Pieu" : Cadre "Définition des couches de sol"

Type de calcul	Type de données	Données de sol à saisir
	A partir des données pressiométriques (élastique)	$Z_{\text{base}}, B, E_M, \alpha$
Calcul de pieu sous sollicitations latérales	A partir des données pressiométriques (élastoplastique)	Z_{base} , B, E _M , α , p _f *, p _I *
	Avec saisie manuelle 2 paliers	Z _{base} , B, K _s , P _{max}
	Avec saisie manuelle 3 paliers	$Z_{base}, B, K_{s1}, P_1, K_{s2}, P_2$
Calcul spécifique	A partir des données élastiques	$Z_{\text{base}}, B, E_M, \alpha$
de flambement	Avec saisie manuelle	Z _{base} , B, K _s

 Tableau G.4
 : Onglet "Sol/Pieu" : Cadre "Définition des couches de sol" –

 Données requises en fonction du type de calcul choisi

Nota : des figures d'aide sont disponibles pour les modes de saisie "manuels". Un exemple de figure d'aide est donné ci-dessous. Pour accéder à ces figures, cliquer sur le bouton situé sous le tableau.

Figure G.14 : Figure d'aide illustrant les paramètres de la loi de comportement "manuelle" à 3 paliers

G.3.3.2. Cadre "Discrétisation du pieu"

Il s'agit de définir ici les caractéristiques du pieu au sein de chaque couche de sol.

Le nombre de subdivisions n contrôle la densité du maillage éléments finis considéré pour le pieu. Il est recommandé de raffiner le maillage, car cela a peu d'incidence sur le temps de calcul, et permet de garantir un résultat suffisamment précis.

Concernant la prise en compte des déformations d'effort tranchant, la contribution de ces déformations est généralement négligeable quand le rapport "longueur/diamètre" est supérieur à 10 voire à 20 (hypothèse des poutres minces). Pour des pieux de faible élancement comme des puits par exemple, cette hypothèse n'est plus valide et il peut s'avérer nécessaire d'adopter le modèle général des poutres épaisses qui nécessite de définir, en plus du produit d'inertie, la rigidité du cisaillement GS' prise égale au produit du module de cisaillement G par la section réduite S'.

Désignation des paramètres	Unité	Valeur par défaut	Condition d'affichage	Valeur obligatoire	Contrôles locaux
Case à cocher 'Prise en compte des déformations d'effort tranchant'	-	Décochée	Pour les calculs de type "Calcul de pieu avec sollicitation latérale"	Oui si affichée	
H : épaisseur de la couche	m	-	Toujours	Complétée automatiquement	-
EI : produit d'inertie du pieu	kN.m²	-	Toujours	Oui	> 0
n : nombre de subdivisions de la couche	-	10	Toujours	Oui	5 ≤ n < 4000
GS' : rigidité de cisaillement	kN	-	Si la case 'Prise en compte des déformations d'effort tranchant' est cochée	Oui	>0

Tableau G.5 : Onglet "Sol/Pieu" : Cadre "Discrétisation du pieu"

Pour un matériau homogène, le module de cisaillement s'exprime en fonction du module d'Young E et du coefficient de Poisson v à l'aide de la relation : G = E/2(1+v). Quant à la section réduite S', celle-ci s'exprime comme la section du pieu S multipliée par un facteur réducteur k dépendant de la forme géométrique de la section, soit S' = k x S. La figure cidessous précise les valeurs de k à prendre en compte pour quelques cas courants :

Sect	ions pleines	Sections à parois minces		
	Rectangle k = $\frac{5}{6}$ = 0.833	\bigcirc	Tube circulaire k = 0.5	
	Cercle $k = \frac{6}{7} = 0.857$		Tube carré k = 0.416	
	Tube épais $k = \frac{6}{7 + 20 \alpha^2}$ $\alpha = \frac{b/a}{1 + b^2/a^2}$		Section I (b = h) EF: $k_z = 0.32$ $k_y = 0.69$	
y2a	Ellipse $k_{z} = \frac{12 (3 a^{2} + b^{2})}{40 a^{2} + 16 b^{2}}$		Cornière (b = h) EF: k = 0.358	
Z4 y	Demi-cercle k _Z = 0.766 k _y = 0.863		Section U (b = h) EF: k _z = 0.235 k _y = 0.618	

Figure G.15 : Valeurs de k à prendre en compte pour le calcul de la section réduite S' pour quelques cas courants

Nota : la prise en compte des déformations d'effort tranchant n'est pas accessible dans le cas d'un calcul spécifique de flambement.

		\$	Pieu 1/1 :	Titre du calcul 🍃							n
			🔹 Paramètre:	; 💿 Sol/pieu 💿 Cha	gement extérieu	ur sur le pieu 🛛 🔊	Déformée libre du sol g(z)				Ĩ
15 .						С	Chargement	: extérieu	r sur	le pier	ı
			Charges pon	tuelles normales au pieu			y				1
			N°	Z	0.00	T 750.00	M 0.00	K 0.00500	C	0.00500	
0			1		-7,00	0,00	0,00	0,00E00		0,00E00	
			2		-10,00	0,00	0,00	0,00E00		0,00E00	
	t										
j	+ Cote de reference : u.u m										
5	-70 m										
	-7.0 III	:									
-10	-10.0 m	:									1
. 1			Díslava							2	
15			Deplacemen	Translation imposée	u	0.00 1	Rotation imposée	w (rad)	0.00	^	
				lin la site	7.00	0,000		w (100)	0,00	~]
-2-			-Cas de charg	e multiples en tete	en tête						1
0				a cua de charge multiples	critete						
			Charges répa	rties normales au pieu—							1
25			Activer le	s charges réparties							
										50	l
г-Е	éments	1								4	
s	mb. Désignation Visible 🦳 🔍 🔍 📿 🗺										
	Pieu 🗹 📃		-			incement du calcul					1
E	Sol 🗹					Lancer le calcui	Voir les résultats				

G.3.4. Onglet "Chargement extérieur sur le pieu"

Figure G.16 : Onglet "Chargement exérieur sur le pieu"

Cet onglet permet de définir les différents types de charges appliquées sur le pieu. Chaque type de charge fait l'objet d'un cadre spécifique.

<u>Nota</u> : dans le cas d'un calcul spécifique de flambement, seul le cadre « charges ponctuelles normales au pieu » est accessible et seules les raideurs ponctuelles (K, C) peuvent être définies.

G.3.4.1. Cadre "Charges ponctuelles normales au pieu"

Ce cadre permet de définir les charges ponctuelles sur le pieu. Celles-ci sont exprimées dans le <u>repère local</u> du pieu et comportent 4 composantes : un effort latéral T (perpendiculaire au pieu), un moment de flexion M, une raideur en translation ponctuelle K, ainsi qu'une raideur en rotation ponctuelle C. Ces raideurs sont à définir (si nécessaire) en plus de celles (surfaciques) représentatives du sol et définies dans l'onglet précédent.

Le nombre de lignes dans ce tableau est égal au nombre de couches définies dans la coupe de sol plus un : en effet, les charges ponctuelles normales au pieu ne peuvent être appliquées qu'aux limites supérieures et inférieures des couches.

<u>RAPPEL</u> : l'effort latéral T est exprimé dans le repère local du pieu, en particulier, dans le cas d'un pieu incliné, cet effort reste perpendiculaire au pieu et n'est donc pas horizontal.

Figure G.17 : Onglet "Chargement exérieur sur le pieu" – Charges ponctuelles normales au pieu

Désignation des paramètres	Unité	Valeur par défaut	Condition d'affichage	Valeur obligatoire	Contrôles locaux
N° : numéro d'ordre des charges	-	-	Toujours	Complétée automatiquement	-
Z : cote de la charge	М	-	Toujours	Complétée automatiquement	-
T : effort latéral ponctuel	kN	0,00	Toujours		-
M : moment fléchissant ponctuel	kN.m	0,00	Toujours		-
K : raideur de rappel ponctuelle en translation latérale, normale à l'axe du pieu (*)	kN/m	0,00	Toujours	Oui mais peuvent être toutes nulles	≥ 0
C : raideur de rappel ponctuelle en rotation (**)	kN.m/rad	0,00	Toujours		≥ 0

(*) : Pour simuler une articulation, prendre K=1 e 10 kN/m.

(**) : Pour simuler un encastrement, prendre K=1 e 10 kN/m et C= 1 e 10 kN.m/rad.

Tableau G.6 : Onglet "Chargement extérieur sur le pieu" : Cadre "Charges ponctuelles normales au pieu"

Un clic sur le bouton al ouvre la figure d'aide à la définition des charges :

Figure G.18 : Aide à la définition des charges

😻 Paramètres 🔰 💐 Solj	lpieu 🝼 Chargement exte	érieur sur le pieu	🕈 Déformée libre du sol ç	j(z)	
		Ch	argement	extérieur	sur le pieu
Charges ponctuelles no	rmales au pieu		_		
N ^o	Z	т	M	К	с 🦑
0	0,00	700,00	0,00	0,00E00	0,00E00
1	-8,00	0,00	0,00	0,00E00	0,00E00
2	-12,00	0,00	0,00	0,00200	0,00E00
					2
Deplacements imposé	s en tête de pieu			(n [
	ation imposee y (m)	0,00 🤪	 Rotation impose 	eω(rad)	0,00
Cas de charge multiples	en tête				
Activer les cas de c	harge multiples en tete				
Charges réparties norm	ales au pieu				
Activer les charges	réparties				
					Etc
					~~~~
					2

#### G.3.4.2. Cadre "Déplacements imposés en tête de pieu"

Figure G.19 : Onglet "Chargement exérieur sur le pieu" – Déplacements imposés en tête du pieu

Ce cadre permet d'imposer une translation ou une rotation en tête du pieu. La définition d'une translation (resp. rotation) imposée en tête désactive dans le cadre précédent l'effort latéral (resp. moment) imposé en tête.

Désignation des paramètres	Unité	Valeur par défaut	Condition d'affichage	Valeur obligatoire	Contrôles locaux
<b>y</b> : translation imposée en tête du pieu : case à cocher et valeur	m	-	-	Valeur à définir si la case à cocher est cochée	-
<ul> <li>ω : rotation imposée en tête du pieu : case à cocher et valeur</li> </ul>	Rad	-	-	Valeur à définir si la case à cocher est cochée	-

Tableau G.7 : Onglet "Chargement extérieur sur le pieu" : Cadre "Déplacement imposée en tête de pieu"

<u>Nota</u> : les déplacements imposés en tête de pieu ne seront plus affichés ni pris en compte si les charges multiples en tête sont activées.





# G.3.4.3. Cadre "Charge multiples en tête"

Figure G.20 : Onglet "Chargement exérieur sur le pieu" - Charges multiples en tête

Ce cadre permet de définir plusieurs cas de chargement (T, M) en tête.

## G.3.4.3.1. Activer les cas de charge multiples en tête

Les données ci-dessous sont à compléter si la case à cocher "Activer les cas de charge multiples en tête" est activée. Dans ce cas, il est obligatoire de saisir au moins une ligne dans le tableau correspondant. D'autre part, toute ligne définie doit être complétée.

Désignation des paramètres	Unité	Valeur par défaut	Condition d'affichage	Valeur obligatoire	Contrôles locaux
N° de cas de chargement en tête	-	-	Pour touto	Incrémentée automatiquement	-
T : effort latéral en tête	kN	-	ligne créée dans le	Oui	Sur chaque ligne, l'une
M : moment de flexion en tête	kN.m	-	tableau	Oui	des 2 valeurs doit être non nulle

 Tableau G.8
 : Onglet "Chargement extérieur sur le pieu" : Cadre "Charge multiples en tête"

Rappel : les déplacements imposés en tête de pieu ne seront plus affichés ni pris en compte si les charges multiples en tête sont activées.

La famille de pieu est rappelée sous le tableau de ce cadre (en fonction de la saisie effectuée sur l'onglet "Paramètres"). Si une famille a effectivement été définie dans l'onglet



"Paramètres", l' "Assistant d'importation des cas de charges issus de Groupie" est accessible en cliquant sur le bouton 🛐. Son fonctionnement est décrit dans le sous-chapitre suivant.

#### G.3.4.3.2. Import des cas de charges issus de Groupie

Comme indiqué précédemment, si une famille a été définie dans l'onglet "Paramètres", l' "Assistant d'importation des cas de charges issus de Groupie" est accessible en cliquant sur le bouton **()**. Un assistant spécifique s'affiche alors (cf Figure G.21).

- Dans le cadre "Répertoire d'importation", indiquer le répertoire où se trouve le calcul Groupie à importer. Par défaut, l'assistant affiche le répertoire du projet courant. Au besoin, aidez-vous du bouton Parcourir _____. Foxta affiche dans le cadre de gauche les pieux disponibles dans le répertoire sélectionné.
- Sélectionner le pieu souhaité et l'axe d'importation (selon Ox ou selon Oy) : la date du calcul s'affiche sur la droite. Un message d'avertissement peut indiquer que la date du calcul est ancienne et vous invite à vérifier le contenu des valeurs importées.

Les valeurs des couples T et M (Effort latéral – kN - et Moment de flexion - kN.m) contenus dans le fichier sélectionné s'affichent dans le cadre à droite : ce sont les couples qui seront importés si l'utilisateur valide cette fenêtre.

- Indiquer s'il faut remplacer les couples (T, M) existants dans le projet courant, ou s'il faut ajouter les couples (T, M) aux couples existants du projet courant.
- Cliquer sur le bouton OK

Répertoire d'importation	
E: \Users \mto \Documents \Z \MTO \Foxta V3\F	Foxta 06 2012\04 Groupe de pieux\MICROPIEU VIDE 12M A
licropieu vide 12m a (Famille A selon Ox)	Date du calcul Vendradi 8 juin 2012 12:16:17
licropieu vide 12m a (Famille A selon Oy)	Venuleuro juni 2012 12.10.17
	Valeurs T / M à importer
	23.1042 / 0.578662
	24.8803 / 0.141668
	24.8803 / 0.141668
	23.1042 / 0.578662
	16.6458 / 2.16773
	14.8697 / 2.60472
	14.8697 / 2.60472
	16.6458 / 2.16773
	Remplacer les valeurs actuelles
	<ul> <li>Ajouter les valeurs à la suite des actuelles</li> </ul>

Figure G.21 : Assistant d'importation de cas de charge issus du module Groupie

Les données importées sont maintenant disponibles sous formes de cas de chargements en tête (T, M) dans le module Piecoef+.





# G.3.4.4. Cadre "Charges réparties normales au pieu"

Figure G.22 : Onglet "Chargement exérieur sur le pieu" – Charges réparties normales au pieu

Ce cadre permet de définir les charges réparties normales au pieu (repère local) sous la forme d'une charge trapézoïdale sur l'épaisseur de chaque couche. Ces charges sont prises positives de la gauche vers la droite.

Les données ci-dessous sont à compléter si la case à cocher "Activer les charges réparties" est activée :

Désignation des paramètres	Unité	Valeur par défaut	Condition d'affichage	Valeur obligatoire	Contrôles locaux
N° : ordre des charges	-	-		Complétée automatiquement	-
<b>Z1</b> : cote du toit de la charge	m	-		Complétée automatiquement	-
<b>Z2</b> : cote de la base de la charge	m	-	Si 'Activer les charges	Complétée automatiquement	-
<b>Ch. 1</b> : valeur de charge au toit de la couche	kPa	0,00	réparties' cochée	Oui mais peuvent	-
<b>Ch. 2</b> : valeur de charge à la base de la couche	kPa	0,00		être toutes nulles	-

 Tableau G.9
 : Onglet "Chargement extérieur sur le pieu" : Cadre "Charges réparties normales au pieu"



Le nombre de lignes dans ce tableau est donc fixe : il est égal au nombre de couches définies dans la coupe de sol, et certaines données sont complétées automatiquement en fonction de la coupe de sol (mais il est possible de ne pas définir de charge réparties dans le tableau si le projet n'en comporte pas).

# G.3.5. Onglet "Déformée libre du sol g(z)"

Nota : cet onglet n'est accessible que dans le cas d'un calcul de pieu sous chargement latéral.

Cette fonctionnalité (optionnelle) permet de définir une déformée libre g(z) du sol autour du pieu : la prise en compte d'une telle déformée implique que la réaction latérale du sol n'est plus fonction du déplacement latéral du pieu mais du déplacement relatif du pieu y(z) par rapport à celui (libre) du sol y(z)-g(z).

Cette déformée libre du sol se développe généralement au sein d'une couche compressible sous l'effet d'un remblai réalisé après mise en œuvre des pieux comme le schématise la figure ci-dessous.



Figure G.23 : Exemple de développement d'une déformée libre g(z)



Figure G.24 : Onglet "Déformée libre du sol g(z)"



# G.3.5.1. Cadre "Déformée libre du sol g(z)"

Les données ci-dessous sont à compléter si la case à cocher "Définir une déformée g(z)" est activée :

Désignation des paramètres	Unité	Valeur par défaut	Condition d'affichage	Valeur obligatoire	Contrôles locaux
Couche	-	-		Complétée automatiquement en fonction de Z	-
Z : cote	m	-	Si "Définir une déformée g(z)" est cochée	Oui	La série des valeurs doit être strictement décroissante
<b>g(z)</b> : déformée libre du sol	m	-		Oui	-

Tableau G.10 : Onglet "Déformée libre du sol g(z)" Cadre "Déformée libre du sol g(z)"

Ce tableau peut être complété manuellement, ou automatiquement grâce à l'assistant g(z), décrit ci-dessous.

Nota : la déformée libre g(z) peut être introduite directement par des couples (z, g(z)) quelconques. En particulier, il n'est pas nécessaire que les valeurs de Z soient compatibles avec le maillage du pieu. En effet, le moteur de calcul applique systématiquement une réinterpolation de ces valeurs afin d'exprimer les valeurs de g(z) aux points du calcul.

La déformée libre g(z) apparaît sur la représentation graphique :



Figure G.25 : Représentation graphique de la déformée libre g(z)

## G.3.5.2. Assistant g(z) selon l'Eurocode 7

Cet assistant permet de générer sur la hauteur d'une couche donnée, une déformée libre de sol g(z) conforme aux dispositions de la norme d'application de l'Eurocode 7 pour les fondations profondes (NF P 94 262) : il s'agit d'une fonction polynomiale de troisième degré caractérisée par une amplitude  $g_{max}$  et 4 coefficients A1 à A4. La norme fondations profondes propose une méthode empirique pour l'évaluation de l'amplitude  $g_{max}$  de la fonction g(z) exprimée comme un pourcentage de la hauteur de la couche compressible. Ce pourcentage dépend de la géométrie du remblai, de la position relative du pieu par rapport au pied du remblai, ainsi que de la sécurité disponible vis-à-vis de la stabilité d'ensemble.



Pour les coefficients A1 à A4, la norme fondations profondes propose deux jeux de coefficients (courbes I et II dans l'interface) en fonction de la présence ou non d'une couche moins déformable en surface :

- Jeu 1 : à utiliser dans le cas général ;
- Jeu 2 : à utiliser dans le cas d'une couche moins déformable en surface de hauteur significative (supérieure à 30% de la hauteur de la couche compressible).



Figure G.26 : Fonction g(z) - Courbes 1 et 2 telles que définies dans l'Eurocode 7

Cet assistant est accessible par le bouton 强 :

Assistant g(z) selon l'Eurocode 7	×					
Définition de l'horizon compressible						
Cote de toit de l'horizon Z1 (m)	-8,0 🗘					
Cote de base de l'horizon Z2 (m)	-12,0 🗘					
Définition adimensionnelle						
A1 0,50 🗘	Courbes EC7					
A2 1,50 🗘	I					
A3 0,00 🗘	Ш					
A4 -2,00 🗘						
Amplitude						
G _{max} (m)	0,0100 🗘					
$g(z) = G_{max}^{*}(A1 + A2^{*}Z + A3^{*}Z^{2} + A4^{*}Z^{3}) \text{ avec } Z = (Z1 - z)/(Z1 - Z2)$						
ОК	Annuler					

Figure G.27 : Assistant g(z) selon l'Eurocode 7



# Cadre "Définition de l'horizon compressible"

Désignation des paramètres	Unité	Valeur par défaut	Condition d'affichage	Valeur obligatoire	Contrôles locaux
<b>Z1</b> : cote du toit de l'horizon	m	0,00	Toujours	Oui	Z1>Z2
<b>Z2</b> : cote du de la base de l'horizon	m	0,00	Toujours	Oui	Z1>Z2

Tableau G.11 : Assistant g(z) : Cadre "Définition de l'horizon compressible"

# Cadre "Définition adimensionnelle"

Désignation des paramètres	Unité	Valeur par défaut	Condition d'affichage	Valeur obligatoire	Contrôles locaux
A1	-	Les coefficients	Toujours	Oui	-
A2	-	A1 à A4 sont proposés selon	Toujours	Oui	-
A3	-	la norme fondations	Toujours	Oui	-
A4	-	profondes	Toujours	Oui	-

Tableau G.12 : Assistant g(z) : Cadre "Définition adimensionnelle"

#### Cadre "Amplitude"

Désignation des paramètres	Unité	Valeur par défaut	Condition d'affichage	Valeur obligatoire	Contrôles locaux
<b>G</b> _{max} : amplitude maximale du déplacement libre du sol conformément à la norme fondations profondes	m	-	Toujours	Oui	-

Tableau G.13 : Assistant g(z) : Cadre "Amplitude"



## G.3.5.3. Assistant d'importation d'une déformée Piecoef+

Il est également possible d'importer une déformée Piecoef+ en cliquant sur le bouton 🛐 sous le tableau g(z) :

ssistant d'importation de la déformée g(z) d	l'un autre calcul	3
E: \Users \mto \Documents \Foxtav3\picoef\MTO \E	EXEMPLE 02A	$\supset$
Exemple 02a (Pieu 1)	Date du calcul Mardi 7 août 2012 10:48:00	
	Valeurs z => g(z) a importer	
	0.0 => 0.0	^
	-0.2 => 9.84952E-4	
	-0.4 => 0.00197466	
	-0.6 => 0.00297365	
	-0.8 => 0.00398597	
	-1.0 => 0.00501496	
	-1.2 => 0.00606299	-
	-1.4 => 0.00713127	
	-1.6 => 0.00821952	
	-1.8 => 0.00932577	
	-2.0 => 0.0104462	
	-2.33333 => 0.0123284	
	-2.66667 => 0.0142009	
	-3.0 => 0.016033	
	-3.33333 => 0.0177964	
	-3.66667 => 0.0194648	
	-4.0 => 0.0210143	
	-4.33333 => 0.0224236	
	-4.66667 => 0.0236736	~
	Remplacer les valeurs actuelles	
	O Ajouter les valeurs à la suite des actuelles	
	OK Annuler	

Figure G.28 : Assistant d'importation d'une déformée Piecoef+

- En haut de la fenêtre, Foxta indique par défaut le répertoire et le nom du projet en cours. En cliquant sur le bouton Parcourir _____, il est possible de sélectionner un projet différent dans le même répertoire ou dans un répertoire différent.
- Sélectionner un pieu dans le cadre de gauche : la date du calcul de ce pieu s'affiche sur la droite. Un message d'avertissement peut indiquer que la date du calcul est ancienne et vous invite à vérifier le contenu des valeurs importées.
- Foxta affiche les valeurs à importer dans le cadre de droite "Valeurs z => g(z) à importer".
- Indiquer s'il faut remplacer les valeurs g(z) existantes dans le projet en cours, ou s'il faut ajouter les valeurs importées à la suite des valeurs existantes du projet en cours.
- Cliquer sur le bouton OK

Les valeurs importées sont maintenant disponibles dans le projet.

Le nombre de lignes dans ce tableau est donc fixe : il est égal au nombre de couches définies dans la coupe de sol, et certaines données sont complétées automatiquement en fonction de la coupe de sol (mais il est possible de ne pas définir de charge réparties dans le tableau si le projet n'en comporte pas).



# G.3.6. Onglet "Déformée initiale du pieu $y_0(z)$ "

Nota : cet onglet n'est accessible que dans le cas d'un calcul spécifique de flambement.

Cette fonctionnalité (optionnelle) permet de définir une déformée initiale  $y_0(z)$  du pieu (cas d'un défaut de forme par exemple). Sur la base de cette déformée, Piecoef+ évalue les sollicitations de flexion et les déplacements de 2nd ordre qu'induirait l'application d'un effort axial en tête du pieu.

Les données ci-dessous sont à compléter si la case à cocher "Définir une déformée  $y_0(z)^{\scriptscriptstyle \rm T}$  est activée :

Désignation des paramètres	Unité	Valeur par défaut	Condition d'affichage	Valeur obligatoire	Contrôles locaux
Couche	-	-		Complétée automatiquement en fonction de Z	-
Z : cote	m	-	une déformée y ₀ (z)" est cochée	Oui	La série des valeurs doit être strictement décroissante
<b>y₀(z)</b> : déformée initiale du pieu	m	-		Oui	-

Tableau G.14 : Onglet "Déformée libre du sol g(z)" Cadre "Déformée libre du sol g(z)"

Ce tableau peut être complété manuellement, ou automatiquement grâce à un assistant d'importation dont le fonctionnement est identique à celui décrit au chapitre G.3.5.3.

Nota : la déformée initiale  $y_0(z)$  peut être introduite directement par des couples  $(z, y_0(z))$  quelconques. En particulier, il n'est pas nécessaire que les valeurs de Z soient compatibles avec le maillage du pieu. En effet, le moteur de calcul applique systématiquement une réinterpolation de ces valeurs afin d'exprimer les valeurs de  $y_0(z)$  aux points du calcul.

La déformée libre  $y_0(z)$  apparaît sur la représentation graphique :



Figure G.29 : Représentation graphique de la déformée initiale  $y_0(z)$ 



# G.3.7. Calcul et Résultats

## G.3.7.1. Calcul

Le calcul peut se lancer depuis n'importe quel onglet à partir du moment où les onglets sont correctement renseignés, c'est-à-dire lorsqu'ils sont tous marqués d'une croix verte (par exemple : Couches).

Ceux-ci sont marqués d'une croix rouge (par exemple : <u>Couches</u>) tant qu'ils ne sont pas complétés correctement (données manquantes ou non conformes aux valeurs attendues).

Pour lancer le calcul, cliquer sur le bouton 🗸 Lancer le calcul

#### G.3.7.2. Résultats

Pour afficher les résultats du calcul, cliquer sur le bouton Voir les résultats).

La fenêtre suivante s'affiche alors et propose les différents types de résultats accessibles après un calcul Piecoef+ :

- 2 types de résultats numériques : résultats formatés et tableaux de résultats.
- 2 types de résultats graphiques : courbes principales et courbes relatives au flambement.

Résultats	Calculé : il y a 2 secondes (Date du calcul : 27 févr. 2012 14:20:10)	🙀 Retour aux données
-Résultats numériques	Image:	
-Résultats graphiques		
	Courbes principales Courbes relatives au flambement	

Figure G.30 : Fenêtre Résultats

Les chapitres suivants détaillent ces différents résultats pour le cas d'un calcul sans chargement multiple en tête. Voir le chapitre G.3.7.3 pour les résultats d'un calcul avec chargement multiple en tête.


## G.3.7.2.1. Résultats numériques formatés

File :	E:\Users\mto	)\Documents\I	Foxtav3\picoef	EXEMPLE 01A\EX	cemple Oia[PC]	-1.resu		
Calcul	réalisé le : par :	27/02/20: Terrasol	12 à 14h20					
nb d'in itératio	créments : on :	020 003						
Cote de Inclina	référence : ison(°) :	0.000 0.000						
Type de	calcul :	Cal	cul de Pieu so	us sollicitatio	ons latérales			
Loi éla	stoplastique	de mobilisat	tion de la réa	ction latérale	du sol défin	ie à partir des	; caractéristiq	ues pressiométriques
Type de	sollicitatio	ons: 1. (	Cas où les sol	licitations per	manentes en 1	tête dominent		
Caractér	istiques des	couches (dor	nnées utilisat	eur)				
couche	base	EI	EM	alpha	в	pf	pl	
01 02	-8.00 -12.00	0.636E+05 0.636E+05	5000.00 20000.00	0.33 0.50	0.600	300.00 5 2000.00 30	00.00 00.00	
Discréti	sation du pie	eu (Paramètro	es du calcul)					
Eléme	nt	XL	EI	ks1*B	p1*B	ks2*B	p2*B	
001		0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E+00	0.1800E+0	3
002		0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E+00	0.1800E+0	3
003		0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E+00	0.1800E+0	3
005		0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E+00	0.1800E+0	3
006		0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E+00	0.1800E+0	3
007		0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E+00	0.1800E+0	3
009		0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E+00	0.1800E+0	3
010		0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E+00	0.1800E+0	3
011		0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E+00	0.1800E+0	3
012		0.267	0.6360E+05	0.1383E+05 0.1383E+05	0.1800E+03	0.0000E+00	0.1800E+0	2
013		0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E+00	0.1800E+0	3
015		0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E+00	0.1800E+0	3
016		0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E+00	0.1800E+0	3
017		0.267	0.6360E+05	0.1383E+05 0.1282E+05	0.1800E+03	0.0000E+00	0.1800E+0	3
019		0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E+00	0.1800E+0	3
020		0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E+00	0.1800E+0	3
021		0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E+00	0.1800E+0	3
022		0.267	0.6360E+05	0.1383E+05 0.1383E+05	0.1800E+03	0.0000E+00	0.1800E+0	3
023		0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E+00	0.1800E+0	3
025		0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E+00	0.1800E+0	3
026		0.267	0.6360E+05	0.1383E+05	0.1800E+03	0.0000E+00	0.1800E+0	3
027		0.267	0.6360E+05	0.1383E+05 0.1383E+05	0.1800E+03	0.0000E+00	0.1800E+0	3
028		0.26/	0.03602405	0.13832405	0.18005403	0.0000E+00	0.1800E+0	5

Figure G.31 : Résultats numériques formatés (rappel des données)

Les résultats formatés contiennent :

• Un rappel des données : paramètres généraux, données de sol, discrétisation du pieu, chargements définis, etc. Cette première section inclut également la liste des points de calcul (nœuds) définis le long du pieu, dans son repère local.



SoluTion===         Matrice de raideur en tête du pieu	r									
$\frac{1}{                                   $										
$\frac{ T }{ K } =  \frac{r1}{r2} \frac{r2}{r3}  \frac{y}{ K } +  \frac{r0}{r0} $ $\frac{ T }{ K } =  \frac{r1}{r2} \frac{r3}{r3}  \frac{y}{ K } +  \frac{r0}{r0} $ $r1 = 0.2856:05  T0 = -0.4795-04$ $r2 = -0.2371E+05  M0 = 0.5717E-04$ $r3 = -0.2371E+05  M0 = 0.5717E-04  M0 = 0.5717E-04$ $r3 = -0.2371E+05  M0 = 0.5717E-04  M0 = 0.5717E-04  M0 = 0.5717E-04$ $r3 = -0.2371E+05  M0 = 0.5717E-04  M0 =$			====S0	LUTION=====						
$\frac{\text{Matrice de raideur en tête du pieu}{                                    $										
Matrice de raideur en tête du pieu         I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I										
$\frac{1}{                                   $										
Image: transmission of the second		Matrice	e de raideu	ir en tete du	pieu					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
Image: Tright in the second										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		T	r1 r2		то					
Image:			=	+						
$\frac{r1 = 0.2868E+05}{r3 = 0.6150E+05}  T0 = -0.4799E-04$ $\frac{r2 = -0.2971E+05}{r3 = 0.6150E+05}  M0 = 0.5717E-04$ $r3 = 0.6150E+05$ $\frac{Déplacements et sollicitations en tout point du pieu$ Notations $\frac{r1 = 0.2868E+05}{r3 = 0.6150E+05}  M0 = 0.5717E-04$ $\frac{r2 = -0.2971E+05}{r3 = 0.6150E+05}  M0 = 0.000E+00$ $\frac{r2 = -0.2971E+05}{r3 = 0.0000}  0.000E+00  -0.232E-01  0.531E+03  0.612E+04  1$ $\frac{r2 = -0.2971E+05}{r3 = 0.267}  0.457E-01  0.000E+00  -0.232E-01  0.531E+03  0.145E+04  1$ $\frac{r2 = -0.2971E+05}{r2 = 0.4267}  0.426E-01  0.000E+00  -0.232E-01  0.531E+03  0.145E+03  0.982E+03  1$ $\frac{r2 = -0.2971E+05}{r2 = 0.033}  0.38E-01  0.000E+00  -0.232E-01  0.331E+03  0.145E+03  0.982E+03  1$ $\frac{r2 = -0.297}{r2 = 0.033}  0.38E-01  0.000E+00  -0.232E-01  0.38E+03  0.23EE+03  0.982E+03  1$ $\frac{r2 = -0.297}{r2 = 0.033}  0.38E-01  0.000E+00  -0.232E-01  0.38E+03  0.23EE+03  0.982E+03  1$ $\frac{r2 = -0.297}{r2 = 0.033}  0.38E-01  0.000E+00  -0.232E-01  0.38E+03  0.38E+03  0.38E+03  1$ $\frac{r2 = -0.297}{r2 = 0.058E+01}  0.000E+00  -0.232E-01  0.38E+03  0.38E+03  0.38E+03  1$ $\frac{r2 = -0.297}{r2 = 0.058E+01}  0.000E+00  -0.23E+01  0.38E+03  0.38E+03  0.342E+03  1$ $\frac{r2 = -0.297}{r2 = 0.058E+01}  0.000E+00  -0.23E+01  0.23E+03  0.38E+03  0.37E+03  1$ $\frac{r2 = -0.297}{r2 = 0.058E+01}  0.000E+00  -0.23E+01  0.23E+03  0.37E+03  0.37E+03  1$ $\frac{r2 = -0.297}{r2 = 0.058E+01}  0.000E+00  -0.23E+01  0.23E+03  0.37E+03  0.37E+03  1$ $\frac{r2 = -0.297}{r2 = 0.058E+01$		M	r2 r3		мо					
r2 = -0.29712+05       M0 = 0.5717E-04         r3 = 0.6150E+05         Déplacements et sollicitations en tout point du pieu         Motations         X : Decises - repère local du pieu (longueur)         x : intervente du pieu (longueur)       x : retation (rdy/dX)       g : déromée libre du sol projetée (longueur)         y : rotation (rdy/dX)       g : déromée libre du sol (force x longueur)       r : réaction latérale du sol (force / unité de surface)         Colspan="2">Colspan="2">Notation latérale du sol (force / unité de surface)         Colspan="2">X y g w T M r paller         001 0.000 0.489E-01 0.000E+00 -0.232E-01 0.070E+03 0.170E-08 0.113E+04 1         001 -0.267 0.267 0.267 0.266E-01 0.000E+00 -0.232E-01 0.631E+03 0.875E+02 0.105E+04 1         002 -0.267 0.267 0.267 0.426E-01 0.000E+00 -0.232E-01 0.631E+03 0.164E+03 0.982E+03 1         002 -0.267 0.267 0.266E-01 0.000E+00 -0.232E-01 0.531E+03 0.164E+03 0.982E+03 1         003 -0.667 0.667 0.38EE-01 0.000E+00 -0.232E-01 0.38EE+03 0.28EE+03 1         003 -0.667 0.067 0.38EE-01 0.000E+00 -0.232E-01 0.38EE+03 0.28EE+03 0.842E+03 1         003 -0.667 0.667 0.38EE-01 0.000E+00 -0.232E-01 0.38EE+03 0.28EE+03 0.842E+03 1         003 -0.667 0.667 0.38EE-01 0.000E+00 -0.23EE-01 0.38EE+03 0.28EE+03 0.842E+03 1         003 -0.667 0.667 0.38EE-01 0.000E+00 -0.23EE+		r1 - 0	28685+05	T00	47995-04					
Pág = 0.6150E+05       Ministrian         Déplacements et sollicitations en tout point du pieu         Notations         Z : cote (longueur)         X : abscisse - repère local du pieu (longueur)         y : rotation (rdy/AX)         0 : rotation (rdy/AX)		$r_2 = -0$	2971E+05	MO = 0	.5717E-04					
Déplacements et sollicitations en tout point du pieu		r3 = 0	.6150E+05							
Déplacements et sollicitations en tout point du pieu           Notations           2: cote (longueur)           x: abscisse - repère local du pieu (longueur)           y: fibte absolue latérale du pieu (longueur)           g: déformée libre du sol projetée (longueur)           g: déformée libre du sol projetée (longueur)           T: réaction latérale du sol (force / unité de surface)           001         0.000         0.488E-01         0.0000+00         -0.236E-01         0.700E+03         0.170E+08         0.113E+04         1           001         0.000         0.488E-01         0.0000+00         -0.236E-01         0.613E+03         0.657E+02         0.105E+04         1           001         -0.267         0.267         0.426E-01         0.0000+00         -0.232E+01         0.531E+03         0.164E+03         0.982E+03         1           002         -0.267         0.267         0.426E-01         0.000E+00         -0.232E+01         0.531E+03         0.164E+03         0.982E+03         1           002         -0.400         0.400         0.398E+01         0.000E+00         -0.232E+01         0.386E+03         0.282E+03         1           003         -0.533         0.333         0.365E+01         0.000E+00         -0.232E+01         <										
Déplacements et sollicitations en tout point du pieu           Notations           Z: cote (longueur)           X: abscisse - repère local du pieu (longueur)           y: flèche absolue latérale du sol projetée (longueur)           r: effort tranchant (force x) longueur)           r: rédettion latérale du sol (force / unité de surface)           001         0.000         0.000         0.4895-01         0.0000+00         -0.2366-01         0.700E+03         0.170E+08         0.113E+04         1           001         -0.267         0.267         0.426E-01         0.000E+00         -0.232E-01         0.531E+03         0.164E+03         0.982E+03         1           002         -0.267         0.267         0.426E-01         0.000E+00         -0.232E-01         0.531E+03         0.164E+03         0.982E+03         1           002         -0.400         0.400         0.395E-01         0.000E+00         -0.232E-01         0.531E+03         0.164E+03         0.982E+03         1           003         -0.533         0.533         0.365E-01										
Déplacements et sollicitations en tout point du pieu           Notations           Z : cote (longueur)           x: abscisse - repère local du pieu (longueur)           y: ribiche absolue latérale du pieu (longueur)           g: déformée jibre du sol projetée (longueur)           m: moment flèchissant (force x longueur)           r: réaction latérale du sol (force / unité de surface)										
Notations           Z : cote (longueur)           X: abscisse - repere local du pieu (longueur)           y: flèche absolue latérale du pieu (longueur)           w: rotation (=dy/dx)           g: déformée libre du sol projetée (longueur)           m: réaction (=dy/dx)           g: déformée libre du sol projetée (longueur)           r: réaction latérale du sol (force x longuer)           r: réaction latérale du sol (force / unité de surface)		én] a comont c	at collig	itations on t	out point du	ni eu				
Notations           Z: cote (longueur)           X: abscisse - repère local du pieu (longueur)           y: riteine (-d/dX)           g: déformée libre du ol projetée (longueur)           M: moment fléchissant (force x longueur)           T: réaction (-d/dX)           g: déformée libre du sol (force / unité de surface)           r: réaction latérale du sol (force / unité de surface)           control = 1000 0.000 0.000 0.489E-01 0.000E+00 -0.236E-01 0.700E+03 0.170E-08 0.113E-04 1           001 -0.123 0.133 0.457E-01 0.000E+00 -0.232E-01 0.513E+03 0.170E-08 0.982E+03 1           001 -0.267 0.267 0.426E-01 0.000E+00 -0.232E-01 0.533E+03 0.952E+03 0.982E+03 1           002 -0.400 0.400 0.395E-01 0.000E+00 -0.232E-01 0.331E+03 0.164E+03 0.982E+03 1           003 -0.267 0.267 0.426E-01 0.000E+00 -0.232E-01 0.331E+03 0.164E+03 0.982E+03 1           003 -0.433 0.333 0.365E-01 0.000E+00 -0.232E-01 0.336E+03 0.229E+03 0.91E+03 1           003 -0.467 0.667 0.038E-01 0.000E+00 -0.232E-01 0.336E+03 0.228E+03 0.942E+03 1           003 -0.467 0.667 0.038E-01 0.000E+00 -0.232E-01 0.336E+03 0.228E+03 0.942E+03 1           003 -0.467 0.667 0.038E-01 0.000E+00 -0.232E-01 0.328E+03 0.928E+03 0.942E+03 1           003 -0.467 0.667 0.038E-01 0.000E+00 -0.232E-01 0.328E+03 0.932E+03 0.942E+03 1           003 -0.460 0.900 0.308E+01 0.000E+00 -0.232E-01 0.328E+03 0.932E+03 0.942E+03 1           004 -0.933 0.938E-01 0.000E+00 -0.232E-01 0.328E+03 0.932E+03 0.942E+03 1 <t< td=""><td>D</td><td>epracements</td><td>et sonne</td><td>itations en t</td><td>our point au</td><td>preu</td><td></td><td></td><td></td><td></td></t<>	D	epracements	et sonne	itations en t	our point au	preu				
Notations           Z: cote (longueur)           X: abscisse - repere local du pieu (longueur)           y: flèche absolue latérale du pieu (longueur)           w: rotation (-dy/dX)           g: déformée libre du sol projetée (longueur)           H: moment fléchissant (force x longueur)           r: réaction latérale du sol (force / unité de surface)	-									
Z : cote (longueur)         X : abscisse - repère local du pieu (longueur)         y : flèche absolue latérale du pieu (longueur)         W : rotation (=dy/dX)         g : déformée libre du sol projetée (longueur)         M : moment flèchissant (force X longueur)         T : réaction latérale du sol (force / unité de surface)	Notations									
<pre>x : abscisse - repère local du pieu (longueur) y : flèche absolue latérale du pieu (longueur) w : rotation (=dy/dX) g : déformée libre du sol projetée (longueur) T : effort tranchant (force x longueur) T : effort tranchant (force / unité de surface) Elément Z X y g w T M r palier O01     0.000     0.000     0.468E-01     0.000E+00     -0.236E-01     0.700E+03     0.170E-08     0.113E+04     1 001     -0.133     0.133     0.457E-01     0.000E+00     -0.236E-01     0.613E+03     0.875E+02     0.105E+04     1 001     -0.267     0.267     0.426E-01     0.000E+00     -0.23EE-01     0.613E+03     0.875E+02     0.105E+04     1 001     -0.267     0.267     0.426E-01     0.000E+00     -0.23EE-01     0.613E+03     0.875E+02     0.105E+04     1 002     -0.267     0.267     0.426E-01     0.000E+00     -0.23EE-01     0.531E+03     0.164E+03     0.982E+03     1 002     -0.400     0.400      0.35E=01     0.000E+00     -0.23EE-01     0.531E+03     0.164E+03     0.982E+03     1 002     -0.533     0.533     0.365E-01      0.000E+00     -0.223E-01      0.386E+03      0.229E+03     0.911E+03     1 003     -0.533     0.533      0.365E-01      0.000E+00     -0.223E-01      0.386E+03      0.285E+03      0.842E+03     1 003     -0.667      0.667      0.336E-01      0.000E+00      -0.223E-01      0.386E+03      0.285E+03      0.842E+03     1 003     -0.680      0.800      0.308E-01      0.00E+00      -0.228E-01      0.326E+03      0.371E+03      0.79E+03     1 004     -0.933      0.933      0.280E-01      0.00E+00      -0.20E-01      0.262E+03      0.371E+03      0.79E+03     1 004     -0.933      0.338E-01      0.00E+00      -0.20E-01      0.262E+03      0.371E+03      0.79E+03     1 004     -0.671      1.067      0.254E-01      0.00E+00      -0.20E-01      0.262E+03      0.371E+03      0.79E+03     1 004      -0.933      0.280E-01      0.00E+00      -0.20E-01      0.262E+03      0.371E+03      0.79E+03     1 005      -1.067      1.067      0.254E-01      0.00E+00      -0.20E-01      0.262E+03      0.472E+03      0.473E+03      1</pre>	Z : CO	te (longueu	ir)							
<pre>y : flèche absolue latérale du pieu (longueur) w : rotation (=dy/dx) g : déformée libre du sol projetée (longueur) M : moment flèchissant (force x longueur) T : effort tranchant (force) r : réaction latérale du sol (force / unité de surface) </pre>	X : ab	scišse - re	père local	du pieu (lon	gueur)					
<pre>w: rotation (=dy/dx) g: déformée libre du sol projetée (longueur) M: moment fléchissant (force x longueur) T: effort tranchant (force) r: réaction latérale du sol (force / unité de surface) </pre>	y : f1	èche absolu	e latérale	du pieu (lon	gueur)					
g : déformée libre du sol projetée (longueur) M : moment fléchissant (force x longueur) T : effort tranchant (force) r : réaction latérale du sol (force / unité de surface) Elément Z X y g w T M r palier 001 0.000 0.000 0.489E-01 0.000E+00 -0.236E-01 0.700E+03 0.170E-08 0.113E+04 1 001 -0.133 0.133 0.457E-01 0.000E+00 -0.235E-01 0.613E+03 0.875E+02 0.105E+04 1 001 -0.267 0.267 0.426E-01 0.000E+00 -0.232E-01 0.531E+03 0.164E+03 0.982E+03 1 002 -0.267 0.267 0.426E-01 0.000E+00 -0.232E-01 0.531E+03 0.164E+03 0.982E+03 1 002 -0.400 0.400 0.395E-01 0.000E+00 -0.223E-01 0.456E+03 0.229E+03 0.982E+03 1 002 -0.533 0.533 0.365E-01 0.000E+00 -0.223E-01 0.386E+03 0.285E+03 0.842E+03 1 003 -0.667 0.667 0.336E-01 0.000E+00 -0.223E-01 0.386E+03 0.285E+03 0.842E+03 1 003 -0.667 0.667 0.336E-01 0.000E+00 -0.223E-01 0.386E+03 0.32EE+03 0.842E+03 1 003 -0.667 0.667 0.336E-01 0.000E+00 -0.223E-01 0.386E+03 0.321E+03 0.709E+03 1 003 -0.600 0.800 0.308E-01 0.000E+00 -0.209E-01 0.262E+03 0.371E+03 0.709E+03 1 004 -0.930 0.933 0.280E-01 0.000E+00 -0.209E-01 0.262E+03 0.371E+03 0.709E+03 1 004 -0.930 0.800 0.308E-01 0.000E+00 -0.209E-01 0.262E+03 0.371E+03 0.709E+03 1 004 -0.933 0.933 0.280E-01 0.000E+00 -0.192E-01 0.158E+03 0.427E+03 0.586E+03 1 005 -1.067 1.067 0.254E-01 0.000E+00 -0.192E-01 0.158E+03 0.427E+03 0.586E+03 1 005 -1.333 1.333 0.205E-01 0.000E+00 -0.192E-01 0.158E+03 0.427E+03 0.586E+03 1 005 -1.333 1.333 0.205E-01 0.000E+00 -0.192E-01 0.158E+03 0.427E+03 0.586E+03 1 005 -1.333 1.333 0.205E-01 0.000E+00 -0.192E-01 0.158E+03 0.427E+03 0.586E+03 1 006 -1.467 1.467 0.183E-01 0.000E+00 -0.174E-01 0.736E+02 0.457E+03 0.472E+03 1 006 -1.467 1.467 0.183E-01 0.000E+00 -0.174E-01 0.736E+02 0.457E+03 0.472E+03 1 006 -1.467 1.467 0.183E-01 0.000E+00 -0.174E-01 0.736E+02 0.457E+03 0.472E+03 1 006 -1.467 1.467 0.183E-01 0.000E+00 -0.174E-01 0.736E+02 0.457E+03 0.472E+03 1 006 -1.467 1.467 0.183E-01 0.000E+00 -0.174E-01 0.608E+01 0.468E+03 0.373E+03 1 007 -1.733 1.733 0.142E-01 0.000E+00 -0.174E-01 0.	w : ro	tation (=dy	/dX)							
<pre>M : moment fléchissant (force x longueur) T : effort tranchant (force) r : réaction latérale du sol (force / unité de surface) </pre> Elément Z X y g w T M r palier Ool 0.000 0.000 0.489E-01 0.000E+00 -0.23EE-01 0.700E+03 0.170E-08 0.113E+04 1 Ool -0.133 0.133 0.457E-01 0.000E+00 -0.23EE-01 0.613E+03 0.875E+02 0.105E+04 1 Ool -0.267 0.267 0.426E-01 0.000E+00 -0.232E-01 0.51E+03 0.164E+03 0.982E+03 1 Oo2 -0.267 0.267 0.426E-01 0.000E+00 -0.232E-01 0.531E+03 0.164E+03 0.982E+03 1 OO2 -0.267 0.267 0.426E-01 0.000E+00 -0.232E-01 0.531E+03 0.164E+03 0.982E+03 1 OO2 -0.533 0.533 0.365E-01 0.000E+00 -0.232E-01 0.38EE+03 0.228E+03 0.942E+03 1 OO3 -0.667 0.667 0.636E-01 0.000E+00 -0.223E-01 0.386E+03 0.288E+03 0.842E+03 1 OO3 -0.667 0.667 0.036E-01 0.000E+00 -0.223E-01 0.386E+03 0.288E+03 0.842E+03 1 OO3 -0.800 0.800 0.308E-01 0.000E+00 -0.223E-01 0.38EE+03 0.332E+03 0.842E+03 1 OO4 -0.800 0.800 0.308E-01 0.000E+00 -0.223E-01 0.386E+03 0.288E+03 0.774E+03 1 OO4 -0.933 0.933 0.280E-01 0.000E+00 -0.209E-01 0.262E+03 0.371E+03 0.709E+03 1 OO4 -0.933 0.933 0.280E-01 0.000E+00 -0.192E-01 0.207E+03 0.422E+03 0.574E+03 1 OO5 -1.067 1.067 0.254E-01 0.000E+00 -0.192E-01 0.158E+03 0.422E+03 0.586E+03 1 OO5 -1.067 1.067 0.254E-01 0.000E+00 -0.192E-01 0.158E+03 0.427E+03 0.586E+03 1 OO5 -1.200 1.200 0.225E-01 0.000E+00 -0.192E-01 0.158E+03 0.427E+03 0.586E+03 1 OO5 -1.200 1.200 0.225E-01 0.000E+00 -0.192E-01 0.158E+03 0.427E+03 0.586E+03 1 OO5 -1.203 1.203 0.205E-01 0.000E+00 -0.192E-01 0.458E+03 0.427E+03 0.586E+03 1 OO5 -1.203 1.203 0.225E-01 0.000E+00 -0.192E-01 0.158E+03 0.427E+03 0.586E+03 1 OO5 -1.203 1.203 0.225E-01 0.000E+00 -0.192E-01 0.158E+03 0.427E+03 0.586E+03 1 OO5 -1.203 1.200 0.225E-01 0.000E+00 -0.192E-01 0.158E+03 0.427E+03 0.586E+03 1 OO5 -1.200 1.200 0.225E-01 0.000E+00 -0.192E-01 0.158E+03 0.427E+03 0.473E+03 1 OO6 -1.333 1.333 0.205E-01 0.000E+00 -0.1	g:dé	formée libr	e du sol p	rojetée (long	ueur)					
T: effort tranchant (force)         r: réaction latérale du sol (force / unité de surface)         Elément       Z       Y       g       W       T       M       r       palier         001       0.000       0.000       0.489E-01       0.000E+00       -0.236E-01       0.700E+03       0.170E-08       0.113E+04       1         001       -0.133       0.437E-01       0.000E+00       -0.232E-01       0.631E+03       0.645E+02       0.105E+04       1         001       -0.267       0.267       0.426E-01       0.000E+00       -0.232E-01       0.531E+03       0.164E+03       0.982E+03       1         002       -0.400       0.400       0.395E-01       0.000E+00       -0.232E-01       0.456E+03       0.229E+03       0.911E+03       1         002       -0.533       0.533       0.365E-01       0.000E+00       -0.223E-01       0.366E+03       0.285E+03       0.842E+03       1         003       -0.667       0.667       0.36E-01       0.000E+00       -0.223E-01       0.36E+03       0.321E+03       0.774E+03       1         004       -0.800       0.800       0.308E-01       0.000E+00       -0.229E-01       0.262E+03       0.371E+03       0.709E+03 <t< td=""><td>M : mo</td><td>ment fléchi</td><td>ssant (for</td><td>ce x longueur</td><td>)</td><td></td><td></td><td></td><td></td><td></td></t<>	M : mo	ment fléchi	ssant (for	ce x longueur	)					
r : reaction laterale du sol (torce / unite de surrace)         Elément       Z       X       y       g       w       T       M       r       palier         001       0.000       0.000       0.489E-01       0.000E+00       -0.235E-01       0.700E+03       0.170E-08       0.113E+04       1         001       -0.133       0.133       0.457E-01       0.000E+00       -0.235E-01       0.613E+03       0.875E+02       0.105E+04       1         001       -0.267       0.267       0.426E-01       0.000E+00       -0.232E-01       0.531E+03       0.164E+03       0.982E+03       1         002       -0.267       0.267       0.426E-01       0.000E+00       -0.223E-01       0.531E+03       0.164E+03       0.982E+03       1         002       -0.533       0.533       0.365E-01       0.000E+00       -0.223E-01       0.386E+03       0.285E+03       0.842E+03       1         003       -0.667       0.667       0.36E-01       0.000E+00       -0.223E-01       0.386E+03       0.32EE+03       0.842E+03       1         003       -0.667       0.6667       0.36E-01       0.000E+00       -0.202E+01       0.32E+03       0.774E+03       1         004	T : ef	fort tranch	ant (force	:) 	and do not the	2				
Elément         Z         X         y         g         w         T         M         r         palier           001         0.000         0.000         0.489E-01         0.000E+00         -0.236E-01         0.700E+03         0.170E-08         0.113E+04         1           001         -0.133         0.133         0.457E-01         0.000E+00         -0.235E-01         0.613E+03         0.875E+02         0.105E+04         1           001         -0.267         0.267         0.426E-01         0.000E+00         -0.232E-01         0.531E+03         0.164E+03         0.982E+03         1           002         -0.400         0.400         0.395E-01         0.000E+00         -0.232E-01         0.531E+03         0.164E+03         0.982E+03         1           002         -0.400         0.400         0.395E-01         0.000E+00         -0.223E-01         0.386E+03         0.225E+03         0.842E+03         1           003         -0.667         0.667         0.365E-01         0.000E+00         -0.223E-01         0.386E+03         0.285E+03         0.842E+03         1           003         -0.667         0.667         0.368E-01         0.000E+00         -0.222E+01         0.326E+03         0.372E+03 <td>r : re</td> <td>action late</td> <td>erale du so</td> <td>(Torce / un</td> <td>ite de surra</td> <td>ce)</td> <td></td> <td></td> <td></td> <td></td>	r : re	action late	erale du so	(Torce / un	ite de surra	ce)				
Elément         Z         X         y         g         w         T         M         r         palier           001         0.000         0.000         0.489E-01         0.000E+00         -0.236E-01         0.700E+03         0.170E-08         0.113E+04         1           001         -0.133         0.457E-01         0.000E+00         -0.232E-01         0.613E+03         0.875E+02         0.105E+04         1           002         -0.267         0.267         0.426E-01         0.000E+00         -0.232E-01         0.531E+03         0.164E+03         0.982E+03         1           002         -0.267         0.267         0.426E-01         0.000E+00         -0.232E-01         0.531E+03         0.164E+03         0.982E+03         1           002         -0.533         0.533         0.365E-01         0.000E+00         -0.223E-01         0.386E+03         0.285E+03         0.842E+03         1           003         -0.533         0.533         0.365E-01         0.000E+00         -0.223E-01         0.386E+03         0.285E+03         0.842E+03         1           003         -0.667         0.368E-01         0.000E+00         -0.209E-01         0.262E+03         0.371E+03         0.799E+03         1 <th></th>										
Element         Z         X         y         g         w         T         M         r         palter           001         0.000         0.489E-01         0.000E+00         -0.236E-01         0.700E+03         0.170E-08         0.113E+04         1           001         -0.133         0.457E-01         0.000E+00         -0.235E-01         0.613E+03         0.875E+02         0.105E+04         1           002         -0.267         0.267         0.426E-01         0.000E+00         -0.232E-01         0.531E+03         0.164E+03         0.982E+03         1           002         -0.267         0.267         0.426E-01         0.000E+00         -0.223E-01         0.386E+03         0.282E+03         1           002         -0.533         0.533         0.365E-01         0.000E+00         -0.223E-01         0.386E+03         0.285E+03         0.842E+03         1           003         -0.533         0.35E-01         0.000E+00         -0.223E-01         0.386E+03         0.285E+03         0.842E+03         1           003         -0.800         0.800         0.308E-01         0.000E+00         -0.208E+01         0.282E+03         0.371E+03         0.799E+03         1           004         <										
001         0.000         0.489E-01         0.000E+00         -0.236E-01         0.700E+03         0.170E-08         0.113E+04         1           001         -0.133         0.133         0.457E-01         0.000E+00         -0.235E-01         0.613E+03         0.875E+02         0.105E+04         1           001         -0.267         0.267         0.426E-01         0.000E+00         -0.232E-01         0.531E+03         0.164E+03         0.982E+03         1           002         -0.267         0.267         0.426E-01         0.000E+00         -0.232E-01         0.531E+03         0.164E+03         0.982E+03         1           002         -0.400         0.400         0.395E-01         0.000E+00         -0.228E-01         0.456E+03         0.228E+03         0.982E+03         1           003         -0.533         0.533         0.365E-01         0.000E+00         -0.228E-01         0.386E+03         0.285E+03         0.842E+03         1           003         -0.633         0.533         0.365E-01         0.000E+00         -0.228E-01         0.386E+03         0.285E+03         0.842E+03         1           003         -0.800         0.800         0.308E-01         0.000E+00         -0.209E-01         0.262E+03	Element	Z	x	У	g	W	Т	м	r	paiter
001         -0.133         0.1437         0.457E-01         0.000E+00         -0.235E-01         0.613E+03         0.875E+02         0.105E+04         1           001         -0.267         0.267         0.426E-01         0.000E+00         -0.232E-01         0.531E+03         0.164E+03         0.982E+03         1           002         -0.267         0.267         0.426E-01         0.000E+00         -0.232E-01         0.531E+03         0.164E+03         0.982E+03         1           002         -0.400         0.400         0.395E-01         0.000E+00         -0.232E-01         0.456E+03         0.229E+03         0.982E+03         1           002         -0.400         0.400         0.395E-01         0.000E+00         -0.228E-01         0.386E+03         0.228E+03         0.842E+03         1           003         -0.667         0.365E-01         0.000E+00         -0.228E-01         0.386E+03         0.285E+03         0.842E+03         1           003         -0.667         0.667         0.338E-01         0.000E+00         -0.209E-01         0.262E+03         0.371E+03         0.799E+03         1           004         -0.800         0.800         0.308E-01         0.000E+00         -0.1222E+01         0.427E+03 </td <td>001</td> <td>0.000</td> <td>0.000</td> <td>0.489E-01</td> <td>0.000E+00</td> <td>-0.236E-01</td> <td>0.700E+03</td> <td>0.170E-08</td> <td>0.113E+04</td> <td>1</td>	001	0.000	0.000	0.489E-01	0.000E+00	-0.236E-01	0.700E+03	0.170E-08	0.113E+04	1
001         -0.267         0.267         0.426F         0.000E+00         -0.232E-01         0.531E+03         0.164E+03         0.982E+03         1           002         -0.267         0.267         0.426E-01         0.000E+00         -0.232E-01         0.531E+03         0.164E+03         0.982E+03         1           002         -0.400         0.400         0.355E-01         0.000E+00         -0.228E-01         0.366E+03         0.225E+03         0.911E+03         1           002         -0.533         0.533         0.365E-01         0.000E+00         -0.228E-01         0.386E+03         0.285E+03         0.842E+03         1           003         -0.667         0.667         0.366E-01         0.000E+00         -0.221E-01         0.382E+03         0.774E+03         1           003         -0.667         0.667         0.308E-01         0.000E+00         -0.221E+01         0.262E+03         0.371E+03         0.709E+03         1           004         -0.800         0.800         0.308E-01         0.000E+00         -0.221E+01         0.262E+03         0.371E+03         0.799E+03         1           004         -0.677         1.067         0.254E+01         0.000E+00         -0.122E+01         0.158E+03	001	-0.133	0.133	0.457E-01	0.000E+00	-0.235E-01	0.613E+03	0.875E+02	0.105E+04	1
002         -0.267         0.267         0.426E-01         0.000E+00         -0.232E-01         0.531E+03         0.164E+03         0.982E+03         1           002         -0.400         0.400         0.395E-01         0.000E+00         -0.228E-01         0.456E+03         0.228E+03         0.911E+03         1           003         -0.533         0.533         0.365E-01         0.000E+00         -0.228E-01         0.386E+03         0.285E+03         0.842E+03         1           003         -0.667         0.366E-01         0.000E+00         -0.223E-01         0.386E+03         0.285E+03         0.842E+03         1           003         -0.667         0.366E-01         0.000E+00         -0.223E-01         0.326E+03         0.371E+03         0.774E+03         1           003         -0.800         0.800         0.308E-01         0.000E+00         -0.202E+01         0.262E+03         0.371E+03         0.709E+03         1           004         -0.933         0.933         0.280E-01         0.000E+00         -0.122E-01         0.158E+03         0.472E+03         0.586E+03         1           004         -1.067         1.2640.000E+00         -0.132E-01         0.158E+03         0.472E+03         0.586E+03	001	-0.267	0.267	0.426E-01	0.000E+00	-0.232E-01	0.531E+03	0.164E+03	0.982E+03	1
002         -0.400         0.400         0.395E-01         0.000E+00         -0.228E-01         0.456E+03         0.229E+03         0.911E+03         1           003         -0.533         0.533         0.365E-01         0.000E+00         -0.228E-01         0.386E+03         0.285E+03         0.842E+03         1           003         -0.667         0.365E-01         0.000E+00         -0.223E-01         0.386E+03         0.325E+03         0.842E+03         1           003         -0.667         0.667         0.36E-01         0.000E+00         -0.223E-01         0.386E+03         0.322E+03         0.774E+03         1           004         -0.800         0.308E-01         0.000E+00         -0.229E-01         0.262E+03         0.371E+03         0.709E+03         1           004         -0.800         0.308E-01         0.000E+00         -0.209E-01         0.262E+03         0.371E+03         0.709E+03         1           004         -1.067         1.067         0.254E-01         0.000E+00         -0.122E-01         0.158E+03         0.427E+03         0.586E+03         1           005         -1.067         1.224E-01         0.000E+00         -0.192E-01         0.158E+03         0.427E+03         0.586E+03         1<	002	-0.267	0.267	0.426E-01	0.000E+00	-0.232E-01	0.531E+03	0.164E+03	0.982E+03	1
002         -0.533         0.365E-01         0.000E+00         -0.223E-01         0.386E+03         0.285E+03         0.842E+03         1           003         -0.667         0.667         0.366E-01         0.000E+00         -0.223E-01         0.386E+03         0.285E+03         0.842E+03         1           003         -0.667         0.667         0.336E-01         0.000E+00         -0.223E-01         0.386E+03         0.332E+03         0.842E+03         1           003         -0.607         0.667         0.308E-01         0.000E+00         -0.223E+01         0.321E+03         0.372E+03         0.774E+03         1           004         -0.800         0.308E-01         0.000E+00         -0.262E+03         0.372E+03         0.709E+03         1           004         -0.933         0.933         0.280E-01         0.000E+00         -0.202E-01         0.262E+03         0.472E+03         0.586E+03         1           004         -1.067         1.067         0.254E-01         0.000E+00         -0.132E-01         0.158E+03         0.472E+03         0.586E+03         1           005         -1.200         1.200         0.225E-01         0.000E+00         -0.174E-01         0.736E+02         0.4452E+03         0.472E+0	002	-0.400	0.400	0.395E-01	0.000E+00	-0.228E-01	0.456E+03	0.229E+03	0.911E+03	1
003         -0.533         0.365E-01         0.000E+00         -0.223E-01         0.386E+03         0.285E+03         0.842E+03         1           003         -0.667         0.366E-01         0.000E+00         -0.223E-01         0.321E+03         0.322E+03         0.774E+03         1           003         -0.800         0.800         0.308E-01         0.000E+00         -0.209E-01         0.262E+03         0.371E+03         0.709E+03         1           004         -0.800         0.800         0.308E-01         0.000E+00         -0.209E-01         0.262E+03         0.371E+03         0.709E+03         1           004         -0.933         0.933         0.280E-01         0.000E+00         -0.207E+03         0.402E+03         0.646E+03         1           004         -1.067         1.067         0.254E-01         0.000E+00         -0.132E-01         0.188E+03         0.427E+03         0.586E+03         1           005         -1.200         1.200         0.229E-01         0.000E+00         -0.183E-01         0.114E+03         0.445E+03         0.528E+03         1           005         -1.333         1.333         0.205E-01         0.000E+00         -0.174E-01         0.736E+02         0.457E+03         0.472E+03	002	-0.533	0.533	0.365E-01	0.000E+00	-0.223E-01	0.386E+03	0.285E+03	0.842E+03	1
003       -0.667       0.336E-01       0.000E+00       -0.216E-01       0.321E+03       0.332E+03       0.774E+03       1         003       -0.800       0.3080       0.308E-01       0.000E+00       -0.226E-01       0.262E+03       0.371E+03       0.709E+03       1         004       -0.800       0.800       0.308E-01       0.000E+00       -0.209E-01       0.262E+03       0.371E+03       0.709E+03       1         004       -0.933       0.933       0.280E-01       0.000E+00       -0.201E-01       0.207E+03       0.402E+03       0.646E+03       1         004       -1.067       1.267       0.254E-01       0.000E+00       -0.192E-01       0.158E+03       0.427E+03       0.586E+03       1         005       -1.067       1.200       0.254E-01       0.000E+00       -0.192E-01       0.158E+03       0.427E+03       0.586E+03       1         005       -1.200       1.200       0.25E+01       0.000E+00       -0.138E-01       0.114E+03       0.445E+03       0.528E+03       1         006       -1.333       1.333       0.205E-01       0.000E+00       -0.174E-01       0.736E+02       0.457E+03       0.473E+03       1         006       -1.467       1.4	003	-0.533	0.533	0.365E-01	0.000E+00	-0.223E-01	0.386E+03	0.285E+03	0.842E+03	1
003         -0.800         0.308E-01         0.000E+00         -0.209E-01         0.262E+03         0.371E+03         0.709E+03         1           004         -0.933         0.933         0.280E-01         0.000E+00         -0.209E-01         0.262E+03         0.371E+03         0.709E+03         1           004         -0.933         0.933         0.280E-01         0.000E+00         -0.201E-01         0.262E+03         0.402E+03         0.646E+03         1           004         -1.067         1.067         0.254E-01         0.000E+00         -0.192E-01         0.158E+03         0.427E+03         0.586E+03         1           005         -1.067         1.200         0.229E-01         0.000E+00         -0.132E-01         0.118E+03         0.447E+03         0.586E+03         1           005         -1.200         1.200         0.229E-01         0.000E+00         -0.174E-01         0.736E+02         0.447E+03         0.473E+03         1           005         -1.333         1.333         0.205E-01         0.000E+00         -0.174E-01         0.736E+02         0.4457E+03         0.473E+03         1           006         -1.467         1.467         0.422E-01         0.000E+00         -0.174E-01         0.378E+02 <td>003</td> <td>-0.667</td> <td>0.667</td> <td>0.336E-01</td> <td>0.000E+00</td> <td>-0.216E-01</td> <td>0.321E+03</td> <td>0.332E+03</td> <td>0.774E+03</td> <td>1</td>	003	-0.667	0.667	0.336E-01	0.000E+00	-0.216E-01	0.321E+03	0.332E+03	0.774E+03	1
004       -0.800       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806       0.806	003	-0.800	0.800	0.308E-01	0.000E+00	-0.209E-01	0.262E+03	0.371E+03	0.709E+03	1
004         -1.067         1.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.2012         0.1582         0.1582         0.1582         0.4222         0.05         0.5862         0.1582         0.2012         0.1582         0.2012         0.1582         0.2012         0.1582         0.2012         0.2012         0.1582         0.1582         0.4222         0.05862         0.4222         0.5862         0.1312         0.0582         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.0114         0.01133         0.01333 <td>004</td> <td>-0.800</td> <td>0.800</td> <td>0.308E-01</td> <td>0.000E+00</td> <td>-0.209E-01</td> <td>0.2622+03</td> <td>0.3/1E+03</td> <td>0.709E+03</td> <td>1</td>	004	-0.800	0.800	0.308E-01	0.000E+00	-0.209E-01	0.2622+03	0.3/1E+03	0.709E+03	1
005       -1.057       1.057       0.224E-01       0.000E100       0.122E-01       0.138E103       0.42E103       0.388E103       1         005       -1.007       1.200       0.228E-01       0.000E100       -0.132E-01       0.138E103       0.442E103       0.588E103       1         005       -1.200       1.200       0.229E-01       0.000E100       -0.138E-01       0.114E103       0.445E103       0.528E103       1         006       -1.333       1.333       0.205E-01       0.000E100       -0.174E-01       0.736E102       0.457E103       0.473E103       1         006       -1.467       1.467       0.182E-01       0.000E100       -0.174E-01       0.736E102       0.457E103       0.473E103       1         006       -1.467       1.467       0.182E-01       0.000E100       -0.174E-01       0.378E102       0.465E103       0.421E103       1         006       -1.600       1.600       0.162E-01       0.000E100       -0.154E-01       0.608E101       0.468E103       0.373E103       1         007       -1.600       1.600       0.162E-01       0.000E100       -0.154E-01       0.608E101       0.468E103       0.372E103       1         007       -1.733	004	-1 067	1 067	0.2545-01	0.0002+00	-0.1925-01	0.1585+02	0.4022+03	0.5865+02	1
005         -1.200         1.200         0.229E-01         0.000E+00         -0.183E-01         0.114E+03         0.445E+03         0.528E+03         1           005         -1.333         1.333         0.205E-01         0.000E+00         -0.174E-01         0.736E+02         0.457E+03         0.473E+03         1           006         -1.467         1.467         0.183E-01         0.000E+00         -0.174E-01         0.736E+02         0.457E+03         0.473E+03         1           006         -1.467         1.467         0.183E-01         0.000E+00         -0.174E-01         0.736E+02         0.457E+03         0.473E+03         1           006         -1.467         1.467         0.183E-01         0.000E+00         -0.154E-01         0.378E+02         0.455E+03         0.471E+03         1           006         -1.600         1.62E-01         0.000E+00         -0.154E-01         0.608E+01         0.468E+03         0.373E+03         1           007         -1.733         1.733         0.142E-01         0.000E+00         -0.154E-01         -0.219E+02         0.468E+03         0.327E+03         1           007         -1.733         1.733         0.142E-01         0.000E+00         -0.154E-01         -0.219E+02 <td>005</td> <td>-1.067</td> <td>1.067</td> <td>0.254E-01</td> <td>0.000E+00</td> <td>-0.192E-01</td> <td>0.158E+03</td> <td>0.427E+03</td> <td>0.586E+03</td> <td>1</td>	005	-1.067	1.067	0.254E-01	0.000E+00	-0.192E-01	0.158E+03	0.427E+03	0.586E+03	1
005         -1.333         1.333         0.205E-01         0.000E+00         -0.174E-01         0.736E+02         0.457E+03         0.473E+03         1           006         -1.333         1.333         0.205E-01         0.000E+00         -0.174E-01         0.736E+02         0.457E+03         0.473E+03         1           006         -1.333         1.333         0.205E-01         0.000E+00         -0.174E-01         0.736E+02         0.457E+03         0.473E+03         1           006         -1.467         1.467         0.183E-01         0.000E+00         -0.154E-01         0.378E+02         0.465E+03         0.473E+03         1           006         -1.600         1.600         0.162E-01         0.000E+00         -0.154E-01         0.608E+01         0.468E+03         0.373E+03         1           007         -1.600         1.600         0.162E-01         0.000E+00         -0.154E-01         0.608E+01         0.468E+03         0.373E+03         1           007         -1.600         1.620         0.162E-01         0.000E+00         -0.135E-01         -0.468E+03         0.372E+03         1           007         -1.867         1.867         0.123E-01         0.000E+00         -0.135E-01         -0.463E+02	005	-1.200	1,200	0.229E-01	0.000E+00	-0.183E-01	0.114E+03	0.445E+03	0.528E+03	1
006         -1.333         1.333         0.205E-01         0.000E+00         -0.174E-01         0.736E+02         0.457E+03         0.473E+03         1           006         -1.467         1.467         0.183E-01         0.000E+00         -0.164E-01         0.378E+02         0.457E+03         0.473E+03         1           006         -1.460         1.600         0.162E-01         0.000E+00         -0.164E-01         0.688E+01         0.465E+03         0.471E+03         1           007         -1.600         1.600         0.162E-01         0.000E+00         -0.154E-01         0.608E+01         0.468E+03         0.373E+03         1           007         -1.600         1.600         0.162E-01         0.000E+00         -0.154E-01         0.608E+01         0.468E+03         0.373E+03         1           007         -1.733         1.733         0.142E-01         0.000E+00         -0.154E-01         -0.608E+01         0.468E+03         0.372E+03         1           007         -1.867         1.867         0.123E-01         0.000E+00         -0.145E-01         -0.463E+02         0.462E+03         0.327E+03         1           008         -1.867         1.867         0.123E-01         0.000E+00         -0.135E-01	005	-1.333	1.333	0.205E-01	0.000E+00	-0.174E-01	0.736E+02	0.457E+03	0.473E+03	1
006         -1.467         1.467         0.183E-01         0.000E+00         -0.164E-01         0.378E+02         0.465E+03         0.421E+03         1           006         -1.600         1.600         0.162E-01         0.000E+00         -0.154E-01         0.608E+01         0.468E+03         0.373E+03         1           007         -1.600         1.600         0.162E-01         0.000E+00         -0.154E-01         0.608E+01         0.468E+03         0.373E+03         1           007         -1.733         1.733         0.142E-01         0.000E+00         -0.154E-01         -0.219E+02         0.468E+03         0.327E+03         1           007         -1.733         1.733         0.142E-01         0.000E+00         -0.154E-01         -0.219E+02         0.468E+03         0.327E+03         1           007         -1.867         1.867         0.123E-01         0.000E+00         -0.143E+01         -0.463E+02         0.462E+03         0.284E+03         1           008         -1.867         1.867         0.123E-01         0.000E+00         -0.135E-01         -0.463E+02         0.462E+03         0.284E+03         1           008         -1.867         0.30E+01         0.000E+00         -0.135E-01         -0.463E+02	006	-1.333	1.333	0.205E-01	0.000E+00	-0.174E-01	0.736E+02	0.457E+03	0.473E+03	1
006         -1.600         1.600         0.162E-01         0.000E+00         -0.154E-01         0.608E+01         0.468E+03         0.373E+03         1           007         -1.600         1.600         0.162E-01         0.000E+00         -0.154E-01         0.608E+01         0.468E+03         0.373E+03         1           007         -1.733         1.733         0.142E-01         0.000E+00         -0.154E-01         0.608E+01         0.468E+03         0.373E+03         1           007         -1.733         1.733         0.142E-01         0.000E+00         -0.154E-01         0.468E+03         0.372E+03         1           007         -1.867         1.867         0.123E-01         0.000E+00         -0.135E-01         -0.463E+02         0.462E+03         0.284E+03         1           008         -1.867         1.867         0.123E-01         0.000E+00         -0.135E-01         -0.463E+02         0.462E+03         0.284E+03         1           008         -2.867         1.867         0.126E-01         0.000E+00         -0.135E-01         -0.463E+02         0.462E+03         0.284E+03         1	006	-1.467	1.467	0.183E-01	0.000E+00	-0.164E-01	0.378E+02	0.465E+03	0.421E+03	1
007         -1.600         1.600         0.162E-01         0.000E+00         -0.154E-01         0.608E+01         0.468E+03         0.373E+03         1           007         -1.733         1.733         0.142E-01         0.000E+00         -0.154E-01         -0.219E+02         0.466E+03         0.327E+03         1           007         -1.867         1.867         0.132E-01         0.000E+00         -0.135E-01         -0.463E+02         0.462E+03         0.284E+03         1           008         -1.867         1.867         0.123E-01         0.000E+00         -0.135E-01         -0.463E+02         0.462E+03         0.284E+03         1           008         -1.867         1.065-01         0.000E+00         -0.135E-01         -0.463E+02         0.462E+03         0.284E+03         1           008         -2.867         0.867         0.126E-01         0.000E+00         -0.135E-01         -0.463E+02         0.462E+03         0.284E+03         1	006	-1.600	1.600	0.162E-01	0.000E+00	-0.154E-01	0.608E+01	0.468E+03	0.373E+03	1
007         -1.733         1.733         0.142E-01         0.000E+00         -0.144E-01         -0.219E+02         0.466E+03         0.327E+03         1           007         -1.867         1.867         0.123E-01         0.000E+00         -0.135E-01         -0.463E+02         0.462E+03         0.284E+03         1           008         -1.867         1.867         0.123E-01         0.000E+00         -0.135E-01         -0.463E+02         0.462E+03         0.284E+03         1           008         -1.867         1.965-01         0.000E+00         -0.135E-01         -0.463E+02         0.462E+03         0.284E+03         1           008         -3.000         3.000         0.105E-01         0.0135E-01         -0.463E+02         0.462E+03         0.284E+03         1	007	-1.600	1.600	0.162E-01	0.000E+00	-0.154E-01	0.608E+01	0.468E+03	0.373E+03	1
007 -1.867 1.867 0.123E-01 0.000E+00 -0.135E-01 -0.463E+02 0.462E+03 0.284E+03 1 008 -1.867 1.867 0.123E-01 0.000E+00 -0.135E-01 -0.463E+02 0.462E+03 0.284E+03 1 008 -3.000 3.000 0.000E+00 -0.135E-01 -0.674E+02 0.462E+03 0.284E+03 1	007	-1.733	1.733	0.142E-01	0.000E+00	-0.144E-01	-0.219E+02	0.466E+03	0.327E+03	1
008 -1.86/ 1.86/ 0.125±-01 0.000±+00 -0.135±-01 -0.465±+02 0.462±+03 0.284±+03 1	007	-1.867	1.867	0.123E-01	0.000E+00	-0.135E-01	-0.463E+02	0.462E+03	0.284E+03	1
	008	-1.86/	1.86/	0.123E-01	0.000E+00	-0.135E-01	-0.463E+02	0.462E+03	0.284E+03	1

Figure G.32 : Résultats numériques formatés (début de la section des résultats)

- Les résultats :
  - ✓ La matrice de raideur en tête du pieu : coefficients de raideur ρ1, ρ2 et ρ3, ainsi que valeurs des constantes T0 et M0 en tête de pieu au point C₀. Ces raideurs sont exprimées dans le repère local du pieu, avec :
    - $\circ$   $\rho$ 1 (kN/m) : raideur en translation
    - ο ρ2 (kN): raideur "croisée" translation/rotation
    - $\circ$   $\rho$ 3 (kN.m/rad) : raideur en rotation
    - T0 (kN) : effort de translation
    - M0 (kN.m) : moment

Cette matrice de raideur peut ensuite être utilisée dans le cadre du calcul Groupie d'un groupe de pieux (importation possible dans Groupie, voir la partie H du manuel).

- ✓ Le tableau des déplacements et sollicitations en tout point du pieu :
  - o Z: cote (m)
  - X : abscisse dans le repère local du pieu (m)
  - y : flèche absolue latérale du pieu (m)
  - o g: déformée libre du sol projetée (m)
  - o w: rotation (rad)
  - T : effort tranchant (kN)
  - M : moment fléchissant (kN.m)
  - o r: réaction latérale du sol (kPa)
  - o palier : indication du palier sollicité



A la fin de ce tableau, les valeurs extrêmes sont affichées pour chaque type de résultat.

✓ Les charges de flambement pour chaque mode.

Charger	de fla	mbement nour chaque mode
- Charges	de lita	indemente pour chaque node
	Mode	Charge
	001	0.273E+04
	002	0.303E+04
	003	0.473E+04
	004	0.556E+04
	005	0.615E+04
	006	0.749E+04
	007	0.861E+04
	008	0.106E+05
	009	0.125E+05
	010	0.149E+05
	011	0.169E+05
	012	0.191E+05
	013	0.203E+05
	014	0.226E+05
	015	0.244E+05
	016	0.2802405
	017	0.2916+05
	018	0.3246+05
	019	0.3536+05
	020	0.330E+05
	021	0.4716+05
	022	0.4712105
	024	0.563E+05
	025	0.612E+05
	026	0.664E+05
	027	0.718E+05
	028	0.776E+05
	029	0.836E+05
	030	0.898E+05
	031	0.963E+05
	032	0.103E+06
	033	0.110E+06
	034	0.118E+06
	035	0.125E+06
	036	0.134E+06

Figure G.33 : Résultats numériques formatés (début de la section des résultats dans le cas d'un calcul de flambement)

#### G.3.7.2.2. Résultats numériques - Tableaux de résultats

Famille du pieu : Pas de fami	ille									Exporter	Retour
$\begin{pmatrix} T \\ M \end{pmatrix} = \begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix}$	$\left(\begin{array}{c} \rho_2\\ \rho_2 \end{array}\right)$	$\begin{pmatrix} y \\ \phi \end{pmatrix} + \begin{pmatrix} T_0 \\ M_0 \end{pmatrix}$		1	ρ ₁ L,6536E03	ρ ₂ -6,2678E03	ρ ₃ 3,2300E04	T ₀ -891,94	M ₀ 685,58	Fcr : charge cri de Flambement (v = 2,7860	tique aleur exacte) J3 kN
(Inc.) tête (P-2	P3)	(to) _{tête} (mo)								FcrSup : charge de Flambement (k	critique
X		Flèche	М	т		r		g(z)		supérieure issue	de la
	0,00	4, 19E-01	-1,09	695,81		1	300,00		0,0000 个	méthode de Coin) = 3.77EC	13 kN
	0,13	4,04E-01	90,09	671,81		3	300,00		0,0000	-	5 K.
	0,27	3,90E-01	178,06	647,81		1	300,00		0,0000	X	D
	0,27	3,90E-01	178,06	647,81		3	300,00		0,0000	0,00	1,00E00
	0,40	3,75E-01	262,84	623,81		1	300,00		0,0000	0,27	9,45E-01
	0,53	3,61E-01	344,41	599,81			300,00		0,0000	0,53	8,91E-01
	0,53	3,61E-01	344,41	599,81		3	300,00		0,0000	0,80	8,36E-01
	0,67	3,47E-01	422,79	575,81		3	300,00		0,0000	1,07	7,83E-01
	0,80	3,33E-01	497,96	551,81		:	300,00		0,0000	1,33	7,29E-01
	0,80	3,33E-01	497,96	551,81		3	300,00		0,0000	1,60	6,77E-01
	0,93	3, 19E-01	569,94	527,81		3	300,00		0,0000	1,87	6,26E-01
	1,07	3,05E-01	638,71	503,81		3	300,00		0,0000	2,13	5,76E-01
	1,07	3,05E-01	638,71	503,81		1	300,00		0,0000	2,40	5,27E-01
	1,20	2,91E-01	704,29	479,81		3	300,00		0,0000	2,67	4,79E-01
	1,33	2,78E-01	766,66	455,81		3	300,00		0,0000	2,93	4,33E-01
	1,33	2,78E-01	766,66	455,81		1	300,00		0,0000	3,20	3,89E-01
	1,47	2,64E-01	825,84	431,81	L		300,00		0,0000	3,47	3,47E-01
	1,60	2,51E-01	881,81	407,81		1	300,00		0,0000	3,73	3,07E-01
	1,60	2,51E-01	881,81	407,81		3	300,00		0,0000	4,00	2,69E-01
	1,73	2,38E-01	934,59	383,81		3	300,00		0,0000	4,27	2,33E-01
	1,87	2,26E-01	984,16	359,81		3	300,00		0,0000	4,53	1,99E-01
	1,87	2,26E-01	984, 16	359,81		3	300,00		0,0000	4,80	1,68E-01
	2,00	2,14E-01	1030,54	335,81		1	300,00		0,0000	5,07	1,39E-01
	2,13	2,02E-01	1073,71	311,81		:	300,00		0,0000	5,33	1,13E-01
	2,13	2,02E-01	1073,71	311,81		3	300,00		0,0000	5,60	9,01E-02
	2,27	1,90E-01	1113,69	287,81		3	300,00		0,0000	5,87	6,96E-02
	2,40	1,79E-01	1150,46	263,81		3	300,00		0,0000	6,13	5,18E-02
	2,40	1,79E-01	1150,46	263,81			300,00		0,0000	6,40	3,68E-02
	2,53	1,68E-01	1184,04	239,81		3	300,00		0,0000	6,67	2,43E-02
	2,67	1,57E-01	1214,41	215,81		1	300,00		0,0000	6,93	1,42E-02
	2,67	1,57E-01	1214,41	215,81		1	300,00		0,0000	7,20	6,29E-03
	2,80	1,47E-01	1241,59	191,81	L		300,00		0,0000	7,47	3,02E-04
	2,93	1,37E-01	1265,56	167,81		3	300,00		0,0000	7,73	-4,01E-03
	2,93	1,37E-01	1265,56	167,81		3	300,00		0,0000	8,00	-6,90E-03
	3,07	1,27E-01	1286,34	143,81		3	300,00		0,0000	8,27	-8,64E-03
	3,20	1,18E-01	1303,91	119,81		1	300,00		0,0000	8,53	-9,47E-03
	3,20	1,18E-01	1303,91	119,81		3	300,00		0,0000	8,80	-9,60E-03
	3,33	1,09E-01	1318,29	95,81		3	300,00		0,0000	9,07	-9,22E-03
	3,47	1,00E-01	1329,46	71,81		1	300,00		0,0000	9,33	-8,49E-03
	3,47	1,00E-01	1329,46	71,81		3	300,00		0,0000	9,60	-7,53E-03
	3,60	9,21E-02	1337,44	47,81		3	300,00		0,0000	9,87	-6,44E-03
	3,73	8,43E-02	1342,21	23,81		:	300,00		0,0000 🗸	10,13	-5,28E-03 🗸

Figure G.34 : Résultats numériques – Tableaux de résultats



Il s'agit des mêmes résultats que ceux détaillés pour les résultats formatés au chapitre G.3.7.2.1, mais présentés cette fois sous la forme de tableaux, et sans la partie de rappel des données. Certains résultats ne sont pas affichés dans ces tableaux, comme les rotations par exemple.



## G.3.7.2.3. Résultats graphiques - Courbes principales

Figure G.35 : Résultats graphiques – Courbes principales

Nota : ces courbes principales ne sont pas accessibles dans le cadre d'un calcul de type "calcul spécifique de flambement".

Les courbes principales présentent l'affichage graphique de 4 types de résultats :

- le déplacement latéral du pieu (m) en fonction de l'abscisse locale du pieu x(m) ;
- le moment fléchissant du pieu (kN.m) en fonction de l'abscisse locale du pieu x(m) ;
- l'effort tranchant dans le pieu (kN) en fonction de l'abscisse locale du pieu x(m) ;
- la réaction latérale du sol (kPa) en fonction de l'abscisse locale du pieu x(m).

Sous chaque courbe sont indiquées les valeurs minimales et maximales de la courbe correspondante.



Cette fenêtre comporte également un rappel de la famille définie pour le pieu (en haut de la fenêtre), ainsi qu'un bouton Paramètres Groupie permettant d'accéder à la matrice de raideur en tête du pieu (coefficients de raideur  $\rho$ 1,  $\rho$ 2 et  $\rho$ 3, ainsi que valeurs des constantes T0 et M0 en tête de pieu) :



Figure G.36 : Paramètres Groupie



## G.3.7.2.4. Résultats graphiques - Courbes relatives au flambement

Figure G.37 : Résultats graphiques : Courbes relatives au flambement

Dans cette fenêtre, Piecoef+ fournit la valeur charge critique de flambement FCR (kN) ainsi que trois séries de courbes :

- le mode de flambement critique ;
- le calcul du 2nd ordre avec amplification des déplacements sous un effort axial F appliqué en tête, exprimé comme une fraction de la charge critique de flambement ;
- le calcul du 2nd ordre avec amplification des moments sous un effort axial F appliqué en tête.



#### G.3.7.3. Résultats dans le cas d'un chargement multiple en tête

Dans le cas d'un calcul avec chargement multiple en tête, la présentation des résultats est légèrement différente :

- d'une part Piecoef+ affiche les résultats pour les différents cas de chargement en tête,
- d'autre part les paramètres Groupie (matrice de raideur en tête du pieu) et les courbes relatives au flambement ne sont pas disponibles.

Les sous-chapitres suivants détaillent les modifications dans l'affichage des résultats (par rapport au cas des calculs sans chargement multiple en tête) pour chaque type de présentation des résultats.

#### G.3.7.3.1. Résultats numériques formatés

Par rapport aux résultats présentés au chapitre G.3.7.2.1 :

- Le fichier formaté ne comporte pas la matrice de raideur en tête.
- Le fichier formaté comporte successivement les résultats détaillés pour chacun des cas de charge en tête.
- Le fichier formaté ne comporte par les résultats complémentaires relatifs au flambement.

-									
	Chargement e	en tête - (	cas de charge	n° 0001	T = 4000.0 M = 5000.0	0	>		
	Déplacements	; et sollio	citations en t	out point du	pieu				
Notatior	ns								
Z : 0 X : 8 V : 1 W : 1 g : 0	cote (longueu abscisse - re flèche absolu rotation (=dy déformée libr moment fléch	ur) epère loca ue latérale //d×) re du sol p issant (fou	1 du pieu (lor e du pieu (lor projetée (long	igueur) igueur) jueur)					
Τ: 6	effort tranch	nant (force	e) e) (force ( ur	) Vitá de suctor	-0)				
r ; r	reaction late	erate du st	or (force / ur	nice de surrai	-e)				
Elément	t z	×	v	a	 W	т	м	r	palier
001	2.000	0.000	0.1765-01	0.000F+00	-0.434F-02	0.400F+04	0.500F+04	0.920E-02	
001	1.925	0.075	0.173E-01	0.000E+00	-0.433E-02	0.400E+04	0.530E+04	0.903E-02	1
001	1.850	0.150	0.170E-01	0.000E+00	-0.431E-02	0.401E+04	0.560E+04	0.886E-02	1
002	1.850	0.150	0.170E-01	0.000E+00	-0.431E-02	0.401E+04	0.560E+04	0.886E-02	1
002	1.775	0.225	0.167E-01	0.000E+00	-0.430E-02	0.403E+04	0.590E+04	0.869E-02	1
002	1.700	0.300	0.1635-01	0.000E+00	-0.428E-02	0.404E+04	0.620E+04	0.852E=02	1
003	1.625	0.375	0.160E-01	0.000E+00	-0.427E-02	0.407E+04	0.651E+04	0.835E-02	1
003	1.550	0.450	0.157E-01	0.000E+00	-0.425E-02	0.410E+04	0.682E+04	0.819E-02	1
004	1.550	0.450	0.157E-01	0.000E+00	-0.425E-02	0.410E+04	0.682E+04	0.819E-02	1
004	1.475	0.525	0.154E-01	0.000E+00	-0.423E-02	0.414E+04	0.712E+04	0.802E-02	1
004	1.400	0.600	0.151E-01	0.000E+00	-0.422E-02	0.418E+04	0.744E+04	0.786E-02	1
005	1.400	0.600	0.151E-01	0.000E+00	-0.422E-02	0.418E+04	0.744E+04	0.786E-02	1
005	1.325	0.675	0.148E-01	0.000E+00	-0.420E-02	0.423E+04	0.775E+04	0.769E-02	1
005	1.250	0.750	0.144E-01	0.000E+00	-0.418E-02	0.428E+04	0.80/E+04	0.753E-02	1
006	1 175	0.750	0.144E-01	0.000E+00	-0.416E-02	0.4285+04	0.80/E+04	0.753E-02	1
006	1.100	0.900	0.138E-01	0.000E+00	-0.414E-02	0.440E+04	0.872E+04	0.720E-02	1
007	1.100	0.900	0.138E-01	0.000E+00	-0.414E-02	0.440E+04	0.872E+04	0.720E-02	1
007	1.025	0.975	0.135E-01	0.000E+00	-0.412E-02	0.448E+04	0.905E+04	0.704E-02	1
007	0.950	1.050	0.132E-01	0.000E+00	-0.409E-02	0.455E+04	0.939E+04	0.688E-02	1
008	0.950	1.050	0.132E-01	0.000E+00	-0.409E-02	0.455E+04	0.939E+04	0.688E-02	1
008	0.875	1.125	0.129E-01	0.000E+00	-0.407E-02	0.463E+04	0.974E+04	0.672E-02	1
008	0.800	1.200	0.126E-01	0.000E+00	-0.405E-02	0.4/2E+04	0.101E+05	0.656E-02	1
009	0.725	1.275	0.1235-01	0.000E+00	-0.402E-02	0.481E+04	0.101E+05	0.641E-02	1
009	0.650	1.350	0.120E-01	0.000E+00	-0.399E-02	0.491E+04	0.108E+05	0.625E-02	ĩ
010	0.650	1.350	0.120E-01	0.000E+00	-0.399E-02	0.491E+04	0.108E+05	0.625E-02	1
010	0.575	1.425	0.117E-01	0.000E+00	-0.397E-02	0.502E+04	0.112E+05	0.609E-02	1
010	0.500	1.500	0.114E-01	0.000E+00	-0.394E-02	0.512E+04	0.116E+05	0.594E-02	1
011	0.500	1.500	0.114E-01	0.000E+00	-0.394E-02	0.512E+04	0.116E+05	0.594E-02	1
011	0.425	1.575	0.111E-01	0.000E+00	-U.391E-02	0.524E+04	0.120E+05	0.5/9E-02	1
011	0.350	1.650	0.108E-01	0.000E+00	-0.388E-02	0.536E+04	0.123E+05	0.563E-02	1
012	0.275	1.725	0.1055-01	0.000E+00	-0.385E-02	0.530E+04	0.128E+05	0.548E-02	1
012	0.200	1.800	0.102E-01	0.000E+00	-0.382E-02	0.562E+04	0.132E+05	0.533E-02	ĩ
012	0.200	1.800	0.102E-01	0.000E+00	-0.382E-02	0.562E+04	0.132E+05	0.533E-02	1
012	0.125	1.875	0.994E-02	0.000E+00	-0.379E-02	0.576E+04	0.136E+05	0.518E-02	1
013 013	~ ·	4 050	0.9665-02	0.000E+00	-0.375E-02	0.590E+04	0.140E+05	0.504E-02	1
013 013 013	0.050	1.950	0.0002-02	0.0002100					
012 013 013 013 014	0.050	1.950	0.966E-02	0.000E+00	-0.375E-02	0.590E+04	0.140E+05	0.504E-02	1
012 013 013 013 014 014	0.050 0.050 -0.025	1.950	0.966E-02 0.938E-02 0.938E-02	0.000E+00 0.000E+00	-0.375E-02 -0.372E-02	0.590E+04 0.605E+04	0.140E+05 0.145E+05	0.504E-02 0.489E-02	1

Figure G.38 : Résultats numériques formatés dans le cas d'un chargement multiple en tête



## G.3.7.3.2. Résultats numériques - Tableaux de résultats

Par rapport aux résultats présentés au chapitre G.3.7.2.2 :

- on dispose cette fois dans la partie haute de la fenêtre d'une liste de choix permettant de sélectionner le cas de charge pour lequel on souhaite afficher les résultats.
- la matrice de raideur en tête de pieu n'est pas affichée.

Ether     Projet     2	<b>•••</b>
\$ Familie du pieu : Pas de faule Cas de chargement en tête nº1 - T=4000,00 M=5000,00   Exporter Exporter	rter tous les cas de charge 🛛 🙀 Retour
X Historia in I r	q(z)
0,00 1,76E-02 5000,00 4000,00 0,01	0,0000 ^
0,08 1,73E-02 5300,07 4002,81 0,01	0,0000
0,15 1,70E-02 5600,56 4011,25 0,01	0,0000
0,15 1,70E-02 5600,56 4011,25 0,01	0,0000
0,22 1,67E-02 5901,90 4025,31 0,01	0,0000
0,30 1,63E-02 6204,50 4044,99 0,01	0,0000
0,30 1,63E-02 6204,50 4044,99 0,01	0,0000
0,38 1,60E-02 6508,79 4070,31 0,01	0,0000
0,45 1,57E-02 6815,19 4101,24 0,01	0,0000
0,45 1,57E-02 6815,19 4101,24 0,01	0,0000
0,52 1,54E-02 7124,11 4137,80 0,01	0,0000
0,60 1,51E-02 7436,00 4179,99 0,01	0,0000
0,60 1,51E-02 7436,00 4179,99 0,01	0,0000
0,68 1,48E-02 7751,25 4227,80 0,01	0,0000
0,75 1,44E-02 8070,31 4281,24 0,01	0,0000
0,75 1,44E-02 8070,31 4281,24 0,01	0,0000
0,82 1,41E-02 8393,58 4340,30 0,01	0,0000
0,90 1,38E-02 8721,49 4404,99 0,01	0,0000
0,90 1,38E-02 8721,49 4404,99 0,01	0,0000
0,98 1,35E-02 9054,47 4475,30 0,01	0,0000
1,05 1,32E-02 9392,93 4551,23 0,01	0,0000
• <u>1,05</u> 1,32E-02 9392,93 4551,23 0,01	0,0000
1,12 1,29E-02 9737,29 4632,79 0,01	0,0000
1,20 1,26E-02 10088,00 4719,98 0,01	0,0000
1,20 1,26E-02 1008,00 4719,98 0,01	0,0000
1,28 1,235-02 10445,40 4812,79 0,01	0,0000
1,35 1,20E-02 10810,00 4911,23 0,01	0,0000
1,35 1,202-02 10610,00 4911,23 0,01	0,0000
1,42 1,17-02 1118(3,30 5015,29 0,01	0,0000
1,50 1,14-02 1156,50 5124,50 0,01	0,0000
1,50 1,14-02 1150c,50 5124,50 0,01	0,0000
	0,0000
1,00 1,00-02 12096/0 3361/23 0,00	0,0000
1,05 1,005-02 123067/0 5308,23 0,01 1 22 0 0 12255 0 5407.20 0,01	0,0000
1/2 1/05-02 12/30/0 3707/2 0/01	0,0000
1,00 1,022*02 13172,00 301577 0,01	0,0000
1,00 1,02542 1377,00 3015,77 0,01	0,0000
1,00 7,74°-03 1335,00 3737,73 0,01	0,0000
1,55 5,0000 1003,00 300,22 0,01 105 9,660 1403,50 501,22 0,01	0,0000
1/30 3/000-00 1/000/00 3/01/22 0/01 2/02 0/202 1/000/00 3/000/00 3/000/22 0/000	0,0000
210 9,000 11103 000/20 0,00 210 9,1002 140350 600.07 0,00	0,0000
210 0 10F.03 14943 50 6204 07 0,00	0,0000
218 8.8%-03 1541.80 6267,91 0,00	0,0000
275 8.55E-03 1598.40 659.20 0,00	0,0000
275 8.55E-03 150940 651122 0,00	0,0000
2.32 8.29F-03 16394.60 6707.78 0.00	0,0000
1007 100	0.0000

Figure G.39 : Tableau de résultats dans le cas d'un chargement multiple en tête

## G.3.7.3.3. Résultats graphiques - Courbes principales

Par rapport aux résultats présentés au chapitre G.3.7.2.3 :

- on dispose cette fois dans la partie haute de la fenêtre d'une liste de choix permettant de sélectionner le cas de charge pour lequel on souhaite afficher les résultats.
- le bouton "Paramètres Groupie" est grisé : la matrice de raideur en tête de pieu n'est pas accessible.





Figure G.40 : Courbes principales dans le cas d'un chargement multiple en tête

#### G.3.7.3.4. Résultats graphiques - Courbes relatives au flambement

Les résultats concernant le flambement ne sont pas disponibles dans le cas d'un calcul avec chargement multiple en tête : ce type de résultats n'est donc pas accessible dans ce cas (bouton grisé).



# G.4. EXEMPLES DE CALCUL **PIECOEF**+

Le module PIECOEF+ peut réaliser plusieurs types de calculs différents relatifs à un pieu soumis à des efforts latéraux :

- le calcul des coefficients de raideur (pour utilisation en combinaison avec le module GROUPIE);
- le calcul des sollicitations et déplacements le long d'un pieu (avec prise en compte ou non d'une déformée du sol g(z));
- le calcul de flambement et effets du second ordre.

Les 4 exemples suivants illustrent ces différents types de calcul.

## G.4.1. Exemple 1 : Calcul d'un pieu soumis à un chargement (T, M) en tête

Il s'agit dans cet exemple d'étudier un pieu soumis à des efforts latéraux en tête.

- Dans un premier temps, nous étudierons ce pieu en supposant le pieu vertical et un comportement élastique du sol
- Dans un second temps, nous considèrerons le même pieu avec un comportement élastoplastique du sol
- Enfin, nous introduirons une inclinaison du pieu.

#### G.4.1.1. Etape 1 : Pieu vertical et comportement du sol élastique

 Pour cette première étape, nous allons donc considérer un pieu vertical de 60 cm de diamètre et de 12 m de longueur, traversant 2 couches de sol (remblai sableux puis substratum marneux) dont on considère le comportement comme élastique. Ce pieu sera soumis à un effort horizontal en tête de 700 kN, et on suppose une rotation imposée nulle en tête (encastrement dans une semelle).





### G.4.1.2. Saisie des données

A l'ouverture de l'application, Foxta propose :

- de créer un nouveau projet,
- d'ouvrir un projet existant
- d'ouvrir automatiquement le dernier projet utilisé.

Dans le cas de cet exemple :

- Choisir de créer un nouveau projet en sélectionnant le radio-bouton 
   Nouveau projet.
- Cliquer sur le bouton
   OK

#### G.4.1.2.1. Assistant Nouveau projet

Cadre "Fichier"

- Renseigner le chemin du projet en cliquant sur le bouton
- Donner un nom au fichier et l'enregistrer.

Cadre "Projet"

- Donner un titre au projet
- Saisir un numéro d'affaire
- Compléter avec un commentaire si besoin
- Laisser la case "Utiliser la base de données" décochée (nous n'utiliserons pas la base de données pour cet exemple), et cliquer sur le bouton Suivant

Assistant nouveau projet		x
	Nouveau pro	ojet
Fichier		
Chemin du fichier (*) : C:\Pr	ogram Files\Terrasol\FoXta v3\PIECOEF+\Exemple 01a.fxp	$\supset$
-Projet		
Titre du projet (*) :	Exemple 01a	
Numéro d'affaire (*) :	Exemple 01a	
Commentaires :	Plastification et inlinaison	
	Calcul d'un pieu chargé en tête	
(*) Ces champs son	t obligatoires 🔲 Utiliser la base de données Précédent Suivant	

#### G.4.1.2.2. Assistant Nouveau projet : Choix des modules

Dans la fenêtre "Choix des modules", sélectionner le module PIECOEF+ puis cliquer sur le bouton





La fenêtre de saisie des données PIECOEF+ apparaît alors.

Il convient de compléter les différents onglets de données proposés.

#### G.4.1.2.3. Onglet "Paramètres"

🛡 Paramètres 🔍 Sol/pieu 👎	🛛 Chargement extérieur sur le pieu 🍸 🛡 Déformée libre du sol g(z) 🗋
	Paramètres généraux
Type de calcul	
Calcul de pieu sou	is sollicitations latérales
à partir d	es données pressiométriques (élastique)
►	avec sollicitations permanentes
_Paramètres du calcul	
Titre du calcul	Exemple 01a
Cote de référence (m)	0,00 3
Angle d'inclinaison du pieu (°)	0,00
Famille du pieu	Pas de famille 🗸 🗸
	Incrémentation du chargement
	Image: Second state     Image: Second state       Image: Second state     Image: Second state

Cet onglet comprend deux cadres :

Cadre "Type de calcul" : sélectionner

- liste déroulante 1 : Calcul de pieu sous sollicitations latérales
- liste déroulante 2 : A partir des données pressiométriques (élastique)
- liste déroulante 3 : Avec sollicitations permanentes

Cadre "Paramètres du calcul" :

- Titre du calcul : Exemple 01a
- Cote de référence (m) : 0,0 m
- Angle d'inclinaison du pieu : 0° (ce qui correspond à un pieu vertical)
- Famille du pieu : aucune pour cet exemple
- Incrémentation du chargement : nous conservons ici les valeurs proposées par défaut.

Pour passer à l'onglet suivant, cliquer soit sur le nom de l'onglet "Sol/Pieu", soit sur le bouton **>**.



## G.4.1.2.4. Onglet "Sol/Pieu"

Cet onglet concerne la définition des couches de sol et la discrétisation du pieu.

20	ŝ	◄ Pieu #1/1 :	Exemple 01a 🕨					🍦 🍓 📹
		Paramètres	🔊 Sol/pieu 🔍 Charge	ment extérieur sur le p	oieu 🛛 💐 Défor	mée libre du sol g(z)		
		□ Définition des	couches de sol				So	ol/pieu
		N ^o	Nom	Couleur	Z	EM	α	В
- : :		1	Remblai sableux		-8,00	5,00E03	0,33	0,60
:		2	Substratum marneux		-12,00	2,00E04	0,50	0,60
Cote de référence : 0.0 m								
6	:	Nb de	e couches : 2	Bases	de données			r   🐔   💷
-12.0 m	:	Discrétisation	du pieu					
		Prise en co	mpte des déformations d	effort tranchant				
		N	om	h		EI	n	
. 1		Remblai sableu	X	8,0	0	6,30E04	30	
20		Substratum ma	irneux	4,0	0	6,30E04	15	
und de la constante de la con								
Symb. Désignatio		Nb de	e découpages : 45					<b>4</b>
Pieu Sol		1		Lancement du calcul	) 🗵 Voir les ré	ésultats		

#### Cadre "Définition des couches de sol" :

Nous avons 2 couches de sol à définir pour cet exemple.

Les données à introduire sont précisées dans le tableau ci-dessous.

**Important** : par convention, la base des pieux est définie dans Piecoef+ au même niveau que la base de la dernière couche de sol. Pour définir un pieu de 12 m de longueur, il convient donc de définir la coupe de sol jusqu'à 12 m de profondeur.

Cliquer sur le bouton 🗣 pour créer chacune des couches.

Les données à saisir sont les suivantes :

	Z _{base} (m)	E _м (kPa)	α	B (m)
Nom	Cote de base de la couche	Module pressiométrique	Coefficient rhéologique	Diamètre de forage
Remblai sableux	-8,0	5 000	0,33	0,60
Substratum marneux	-12,0	20 000	0,50	0,60

Nota : la couleur de chaque couche est proposée automatiquement, mais peut être modifiée.

PIECOEF+ permet d'enregistrer ces couches de sol dans la base de données du projet et/ou dans la base de données globale des sols en cliquant sur le bouton Bases de données.



Ceci permet d'enregistrer les couches de sol avec leurs paramètres afin d'éviter de les ressaisir lors de l'utilisation d'un autre module pour le même projet Foxta, ou de la création d'un autre projet Foxta.

La base de données ne sera pas utilisée dans le cadre de cet exemple, mais son utilisation est décrite en détail dans la partie C du manuel.

Cadre "Discrétisation du pieu" :

Les couches définies précédemment sont automatiquement reportées dans ce tableau.

Les données à introduire sont indiquées dans le tableau ci-dessous.

On conserve ici la case "Prise en compte des efforts tranchants" décochée.

Nom	<b>h (m)</b> Epaisseur de la couche (complétée automatiquement)	<b>EI (kN/m²)</b> Produit d'inertie du pieu	n Nombre de subdivisions de chaque couche
Remblai sableux	8,0	63600	30
Substratum marneux	4,0	63600	15

Le produit El défini ici correspond au pieu de 60 cm de diamètre, avec un module de 10 GPa.

Le nombre de subdivisions n contrôle la densité du maillage éléments finis considéré pour le pieu. Il ne faut pas hésiter à raffiner le maillage, cela a peu d'incidence sur le temps de calcul et permet de garantir un résultat suffisamment précis. Pour cet exemple, le nombre de subdivisions a été défini proportionnel à l'épaisseur de chaque couche, de façon à utiliser un pas de calcul constant de 4/15 = 0,27 m.



	\$ Pieu #1/1 : Exemp	le 01a 🍃				• • 1
5	🕈 Paramètres 🛛 🔊 Sc	ol/pieu 🛛 🔊 Chargement ext	érieur sur le pieu 🛛 💿	Déformée libre du sol g(;	z)	
	-Charges ponctuelles r	iormales au pieu	Cha	rgement e	extérieur	sur le pieu
5	Nº	Z	т	M	К	с 🅢
	0	0,00	700,00	0,00	0,00E00	0,00E00
1	1	-8,00	0,00	0,00	0,00E00	0,00E00 🌯
1	2	-12,00	0,00	0,00	0,00E00	0,00E00
Cote de référence : 0.0 m						
2 7 1	Déplacements impos	és en tête de pieu	0.00	Datation imposée	er (cad)	
	Irans	aduuri iripusee y (m)	0,00 🗸	<ul> <li>Rotadon imposee</li> </ul>	w (iau)	0,00
P.	Cas de charge multiple	es en tête				
	Activer les cas de	charge multiples en tête				
й [	-Charges réparties nor	males au pieu				
1	Activer les charge	s réparties				
-						152
-Eléments						10 m
						2
Symb. Designation Visible						
Sol 🗹			ancement du calcul	Voir les résultats		

## G.4.1.2.5. Onglet "Chargement extérieur sur le pieu"

#### Cadre "Charges ponctuelles normales au pieu" :

Les données à introduire sont les suivantes :

- la cote de la charge Z (m) (déduite des cotes saisies dans l'onglet "Sol/Pieu")
- l'effort latéral ponctuel T (kN)
- le moment fléchissant ponctuel M (kN.m)
- la raideur de rappel ponctuelle en translation latérale K (kN/m)
- la raideur de rappel ponctuelle en rotation C (kN.m/rad)

On souhaite pour l'instant appliquer un effort horizontal de T = 700 kN en tête du pieu. Les données à saisir sont donc les suivantes :

N°	Z (m)	T (kN)	M (kN.m)	K (kN.m)	C (kN.m/rad)
0	0,00	700,00	0,00	0,00	0,00
1	-8,00	0,00	0,00	0,00	0,00
2	-12,00	0,00	0,00	0,00	0,00



Nota : le bouton permet d'afficher une figure d'aide qui précise la convention des signes et la signification des différents paramètres demandés :



Cadre "Déplacement imposé en tête de pieu" :

Les données à introduire sont les suivantes :

- la translation imposée y (m)
- la rotation imposée ω (rad)

On impose ici une condition de rotation nulle en tête du pieu :

	Case à cocher	Valeurs	
y (m)	Non	-	
ω (rad)	Oui	0,00	

Cadre "Cas de charge multiples en tête" :

• Conserver la case "Activer les cas de charge multiples en tête" décochée.

Cadre "Charges réparties normales au pieu" :

• Conserver la case "Activer les charges réparties" décochée.

## G.4.1.2.6. Onglet "Déformée libre du sol g(z)

Cadre "Définition de g(z)" :

• Conserver la case "Définir une déformée g(z)" décochée.

En effet, nous n'utiliserons pas cette fonctionnalité ici.



### G.4.1.3. Calcul et Résultats

#### G.4.1.3.1. Calcul

Tant que les onglets ne sont pas tous correctement renseignés, le bouton permettant de lancer le calcul s'affiche marqué d'une croix rouge : Lancer le calcul

Une fois que toutes les données sont correctement saisies, le bouton <a>Lancer le calcul</a>) est actif (ce bouton est accessible depuis tous les onglets).

Un clic sur ce bouton permet de lancer le calcul.

Pour accéder aux résultats sous forme de tableaux et de graphiques, cliquer sur le bouton Voir les résultats.

#### G.4.1.3.2. Résultats

Ci-dessous les différents types de résultats disponibles (numériques et graphiques) :



Cliquer par exemple sur le bouton "Courbes principales".



## G.4.1.3.3. Efforts et déplacements



Résultats obtenus :

Flèche : déplacement latéral (cm)		Moment fléchissant M (kN.m)		Effort tra T (k	nchant N)	Réaction latérale du sol p (kPa)		
Min	Max	Min	Max	Min	Max	Min	Max	
0,1	2,4	-725	151	-47	700	-39	563	

Les résultats obtenus sont bien conformes à ceux attendus pour un pieu soumis à un effort horizontal de tête, avec simulation d'un comportement élastique du sol et condition de rotation nulle en tête. En effet :

- On retrouve bien en tête l'effort horizontal imposé de 700 kN.
- Le déplacement latéral est maximal, comme attendu, en tête de pieu, avec 2,4 cm.
- Le moment est également maximal en tête de pieu, avec une valeur absolue de 725 kN.m (moment d'encastrement).
- Enfin, la réaction latérale est elle aussi maximale en tête de pieu, avec 563 kPa.



#### Export des données :

Le bouton 💽 permet d'exporter les courbes vers une image :

Assistant d'exportation
Choisissez une option ci-dessous pour exporter vos données :
Image vers le presse-papiers
Contenu au format Excel vers le presse-papiers
Contenu CSV vers le presse-papiers
O Vers un fichier image (.png)
·ogram Files\Terrasol\FoXta v3\TASSEL 02\resultats_tasseldo.png
Vers un fichier Excel (.xls)
Program Files\Terrasol\FoXta v3\TASSEL 02\resultats_tasseldo.xls
Exporter Annuler

#### G.4.1.3.4. Coefficients de raideur

Ces coefficients ne seront pas utilisés dans le cadre de cet exemple (car nous ne considèrerons pas le comportement du pieu étudié au sein d'un groupe de pieux, avec le module Groupie), mais nous les commentons malgré tout pour information.

Pour obtenir les résultats des raideurs, cliquer sur le bouton (Paramètres Groupie)

Ces raideurs sont exprimées dans le repère local du pieu, avec :

- p1 (kN/m) : raideur en translation
- ρ2 (kN) : raideur "croisée" translation/rotation
- ρ3 (kN.m/rad) : raideur en rotation
- T0 (kN) : effort de translation
- M0 (kN.m) : moment



Retour à la fenêtre de présentations des différents résultats :

Cliquer sur le bouton pour revenir à l'écran de sélection des différents types de résultats.



### G.4.1.3.5. Variante du calcul

Nous allons à présent effectuer le même calcul, mais en remplaçant la condition de rotation imposée (nulle) en tête de pieu par une très forte valeur de raideur de rappel en rotation en tête.

Enregistrer votre projet, puis ensuite l' "enregistrer sous" en lui donnant un nom différent : "Exemple 01abis" par exemple.

Pour modifier les données, cliquer sur le bouton ( Retour aux données) et retourner sur l'onglet "Chargement extérieur sur le pieu" :

- Décocher la case "Rotation imposée ω" pour supprimer la condition de rotation nulle en tête
- Définir C = 1^e10 kN.m/rad à Z = 0 m (en tête du pieu) : valeur très forte pour la raideur de rappel en rotation en tête, c'est une manière alternative de simuler le blocage de rotation.

💐 Paramètres 📔 💐 Sol/	pieu 🛛 🤝 Chargement ext	érieur sur le pieu 🛛 🥑 (	Déformée libre du sol g(z)		
-Charges ponctuelles no	males au pieu	C	hargemen	t extérieur	sur le pieu
5 . NO	7	т	м	K (	
0	- 0.00	700.00	0.00	0.00500	
1	-8.00	0.00	0.00	0.00E00	0.00E00
2	-12.00	0.00	0.00	0.00E00	0.00E00
-Déplacements imposés	en tête de pieu				2
Trans	lation imposée y (m)	0,00 🗘	Rotation imposé	ie ω (rad)	0,00 🗘
-Cas de charge multiples	en tête narge multiples en tête				

Relancer le calcul en cliquant sur le bouton ( Lancer le calcul ).

Puis cliquer sur le bouton ( Voir les résultats ) :

Les résultats graphiques, "Courbes principales" montrent que les résultats sont identiques pour les efforts et les déplacements : en effet, une très forte raideur de rappel en tête conduit au même comportement du pieu qu'une rotation nulle imposée en tête.





Par contre, certains "Coefficients de raideur" ("Paramètres Groupie") ont été impactés :



En fait, ces coefficients de raideurs représentent le comportement apparent en tête du système "pieu + sol + appuis ponctuels". Ainsi, les valeurs obtenues représentent le comportement d'un pieu dont la tête sera toujours bloquée en rotation quelque soit le chargement appliqué.

En revanche, lorsque ce blocage en rotation avait été simulé par une "rotation imposée nulle", cela avait été pris en compte par le moteur du calcul comme un "cas de charge" et non pas comme une condition d'appui.





## G.4.1.4. Etape 2 : Sol élastoplastique

Nous allons à présent traiter le même exemple que précédemment, mais en adoptant pour le sol un comportement élastoplastique (défini à partir des résultats pressiométriques), et non plus élastique.

#### G.4.1.4.1. Modification des données

Cliquer sur le bouton 🛛 🕊 Retour aux données

Enregistrer ensuite l'exemple précédent sous un nouveau nom ("Exemple 01b" par exemple), puis modifier les données comme suit.

Retourner sur l'onglet "Paramètres" :

Cadre "Type de calcul" :

- Dans la deuxième liste déroulante, sélectionner "A partir des données pressiométriques (élastoplastique)"
- Dans la troisième liste déroulante, sélectionner "Cas où les sollicitations permanentes dominent en tête" :

Pieu 1/1 : Exemple 01b	pieu 🖉 Déformée libre du sol o(2)	
Turo do caled		Paramètres généraux
Calcul de pieu sous solicitations latérales		~
à partir des données pressiométriques	: (élastoplastique)	~
cas où les solicitations per	nanentes dominent en tête	~
Paramètres du calcul		
Titre du calcul	Exemple 0.1b	
Cote de référence (m)		0,00 3
Angle d'indinaison du pieu (°)		30,00 🗘
Famile du pieu	Pas de famile	▼ (Incrémentation du chargement)
[	Lancement du calcul	•

Il est donc nécessaire de compléter la définition des couches de sol pour tenir compte du comportement élastoplastique (d'ailleurs la croix rouge sur l'onglet "Sol/Pieu" indique bien que les données sont incomplètes) : cliquer sur l'onglet "Sol/Pieu".

De nouvelles colonnes sont apparues dans le tableau supérieur et doivent être complétées : il s'agit des valeurs de PI* (pression limite nette) et Pf* (pression de fluage nette) pour chaque couche.

Nom	Z _{base} (m)	E _M (kPa)	α	B (m)	Pf* (kPa)	PI* (kPa)
Remblai sableux	-8,00	5 000	0,33	0,60	300	500
Substratum marneux	-12,00	20 000	0,50	0,60	2000	3000



Pieu 1/1 : Exemple 01b											•
🔮 Paramètres	🗸 Sol/pieu	🛛 🕲 Cha	argement extéri	eur sur le pieu	🛛 Déformée libre c	lu sol g(z)					
-Définition des c	ouches de sol									S	ol/pieu
Nº	Nom		Couleur	Zhase	EM	a		В		P _f *	P.*
1	Remblai sab	leux		-8,0	0 5,00E03		0,33		0,60	300,00	500,00
2	Substratum	ma		-12,0	0 2,00E04	1	0,50		0,60	2000,00	3000,00
Nb de	Nb de couches : 2										r 🐔 💶
Discrétisation d	lu pieu	rmations	d'effort tranch	ant							
	Nom			h		EI				n	
Remblai sableux					8,00			6,36E0	4	30	
Substratum mar	neux				4,00			6,36E0	4	15	
Nb de	e découpages	: 45									<b>4</b>
	Lancement du calcul										

Relancer à présent le calcul en cliquant sur le bouton **Clancer le calcul**.

Puis cliquer sur le bouton Voir les résultats).



## G.4.1.4.2. Résultats

#### Courbes principales : Effort et déplacements



Calcul élastique (rappel des résultats précédents) :

## Calcul élastoplastique (résultats du nouveau calcul) :





Comparaison des efforts et déplacements : Calcul élastique / élastoplastique :

	Flèche : déplacement latéral (cm)		lèche : Moment lacement fléchissant eral (cm) M (kN.m)		Ef tran T (	fort chant (kN)	Réaction latérale du sol p (kPa)	
	Min	Max	Min	Max Min Ma		Max	Min	Max
Calcul élastique	-0,1	2,4	-725	-151	-47	700	-39	563
Calcul élasto- plastique	-0,2	5,6	-1065	296	-92	700	-92	300

On note que le comportement élastoplastique a introduit une "limite" dans la butée latérale du sol (plasticité) : le sol ne peut plus reprendre autant de sollicitations qu'en comportement élastique :

- La réaction latérale est plafonnée à la valeur de la pression de fluage (nette), et cette limite est effectivement atteinte sur presque 4 m en tête du pieu.
- Les déplacements sont plus importants (la valeur du déplacement en tête a plus que doublé)
- Les sollicitations dans le pieu ont également augmenté : moments et efforts tranchants (sauf la valeur en tête, correspondant à la valeur imposée dans les données de 700 kN).

📅 Paramètres	Groupie			×					
$\begin{pmatrix} T \\ M \end{pmatrix}_{t \hat{e} t e} = \begin{pmatrix} \rho_1 & \rho_2 \\ \rho_2 & \rho_3 \end{pmatrix} \begin{pmatrix} y \\ \omega \end{pmatrix}_{t \hat{e} t e} + \begin{pmatrix} T_0 \\ M_0 \end{pmatrix}$									
ρ1	ρ2	ρ3	То	Mo					
3,6013E03	-1,0414E04	1,0000E10	498,88	-483,28					
	Exporter OK								

Coefficients de raideur :

Les coefficients de raideurs ont évolué par rapport à l'étape précédente. La plastification partielle du sol a conduit ainsi à une diminution de la part "élastique" de cette matrice de raideur, représentée ici par les coefficients  $\rho_1$ ,  $\rho_2$  et  $\rho_3$ . De plus, la non-linéarité du comportement du système fait apparaître un terme à l'origine non nul, représenté ici par les  $T_0$  et  $M_0$ .



## G.4.1.5. Etape 3 : Cas d'un pieu incliné

Nous allons à présent repartir de l'exemple précédent (avec comportement élastoplastique) et introduire une inclinaison du pieu de 30 ° par rapport à la verticale.

#### G.4.1.5.1. Prise en compte d'une inclinaison de 30°

Pour modifier les données, cliquer sur le bouton <u>Retour aux données</u> et retourner sur l'onglet "Paramètres" :

Cadre "Paramètres de calcul" :

• Angle inclinaison du pieu (sur la verticale) : 30°

Attention, ceci revient à définir un pieu plus long que précédemment, car sa base est située par convention au niveau de la base de la dernière couche de sol, qui est inchangée à la cote -12. La nouvelle longueur du pieu est donc égale à  $12/\cos(30^\circ) = 13,86$  m.



D'autre part, l'effort appliqué en tête est un effort latéral, exprimé par convention dans le repère local du pieu, et il est donc perpendiculaire au pieu : l'effort T = 700 kN est donc à présent également incliné de  $30^{\circ}$ .

Enregistrer votre projet sous un nom différent : "Exemple 01c" par exemple.

Relancer le calcul en cliquant sur le bouton ( Lancer le calcul ).

Puis cliquer sur le bouton voir les résultats).



## G.4.1.5.2. Résultats

#### Courbes principales :



L'ensemble des résultats est exprimé dans le repère local du pieu : en particulier, le déplacement latéral est un déplacement incliné de 30° par rapport à l'horizontale dirigé vers le haut.



On illustre ci-dessous les résultats formatés.

Ils sont également exprimés dans le repère local. Notons que la colonne "palier" indique l'état de mobilisation de la réaction latérale du sol dans chaque élément. Celui-ci varie entre 1 et 3 en fonction du nombre de paliers total constituant la courbe de mobilisation. En particulier, une valeur de 1 correspond toujours à un état élastique pur, tandis qu'une valeur supérieure ou égale à 2 correspond à un état de plastification partielle ou totale.

	D	éplacement	s et sollid	citations en t	out point du	pieu				
	-					<u> </u>				
	Notations									
	Z : CO	te (longue	ur)							
	×: ab	SCISSE - r àche absol	epere loca ue latéral	i du pieu (lon e du pieu (lon	gueur)					
	w : ro	tation (=d	y/dX)	- du picu (ion	gucury					
	g : dé	formée lib	re du sol p	projetée (long	ueur)					
	M : moi T · ef	ment fiech	issant (force	rce x ⊺ongueur ∍ງ	J					
	r : ré	action lat	éral du so	ĺ (force / uni	té de surfac	e)				
	Elément	Z	×	У	g	W	т	м	r	palier
	001	0.000	0.000	0.561E-01	0.000E+00	0.000E+00	0.Z00E+03	-0.107E+04	0.300E+03	2
	001	-0.133	0.154	0.559E-01	0.000E+00	-0.245E-02	0.672E+03	-0.961E+03	0.300E+03	2
	001	-0.267	0.308	0.554E-01	0.000E+00	-0.466E-02	0.645E+03	-0.859E+03	0.300E+03	2
1	002	-0.267	0.308	0.554E-01	0.000E+00	-0.466E-02	0.645E+03	-0.859E+03	0.300E+03	2
1	002	-0.533	0.616	0.533E-01	0.000E+00	-0.835E-02	0.589E+03	-0.669E+03	0.300E+03	2
	003	-0.533	0.616	0.533E-01	0.000E+00	-0.835E-02	0.589E+03	-0.669E+03	0.300E+03	2
	003	-0.667	0.770	0.519E-01	0.000E+00	-0.986E-02	0.561E+03	-0.581E+03	0.300E+03	2
1	003	-0.800	0.924	0.503E-01	0.000E+00	-0.112E-01	0.534E+03	-0.497E+03	0.300E+03	2
1	004	-0.800	1.078	0.503E-01	0.000E+00	-0.122E-01	0.534E+03	-0.497E+03	0.300E+03	2
1	004	-1.067	1.232	0.465E-01	0.000E+00	-0.132E-01	0.478E+03	-0.341E+03	0.300E+03	2
	005	-1.067	1.232	0.465E-01	0.000E+00	-0.132E-01	0.478E+03	-0.341E+03	0.300E+03	2
	005	-1.200	1.386	0.444E-01	0.000E+00	-0.139E-01	0.451E+03	-0.269E+03	0.300E+03	2
	006	-1.333	1.540	0.423E-01	0.000E+00	-0.145E-01	0.423E+03	-0.202E+03	0.300E+03	2
:	006	-1.467	1.694	0.400E-01	0.000E+00	-0.149E-01	0.395E+03	-0.139E+03	0.300E+03	2
•	006	-1.600	1.848	0.377E-01	0.000E+00	-0.152E-01	0.367E+03	-0.804E+02	0.300E+03	2
	007	-1.600	1.848	0.377E-01	0.000E+00	-0.152E-01	0.367E+03	-0.804E+02	0.300E+03	2
1	007	-1.733	2.001	0.353E-01 0.330E-01	0.000E+00	-0.153E-01	0.340E+03	-0.259E+02	0.300E+03	2
1	008	-1.867	2.155	0.330E-01	0.000E+00	-0.153E-01	0.312E+03	0.242E+02	0.300E+03	2
1	008	-2.000	2.309	0.306E-01	0.000E+00	-0.152E-01	0.284E+03	0.702E+02	0.300E+03	2
1	008	-2.133	2.463	0.283E-01	0.000E+00	-0.150E-01	0.257E+03	0.112E+03	0.300E+03	2
1	009	-2.133	2.463	0.283E-01 0.260E-01	0.000E+00	-0.150E-01	0.257E+03	0.112E+03 0.149E+03	0.300E+03	2
1	009	-2.400	2.771	0.238E-01	0.000E+00	-0.142E-01	0.201E+03	0.182E+03	0.300E+03	2
1	010	-2.400	2.771	0.238E-01	0.000E+00	-0.142E-01	0.201E+03	0.182E+03	0.300E+03	2
1	010	-2.533	2.925	0.216E-01	0.000E+00	-0.138E-01	0.173E+03	0.211E+03	0.300E+03	2
1	010	-2.667	3.079	U.196E-01	0.000E+00	-0.132E-01	0.146E+03	0.236E+03	0.300E+03	2
1	011	-2.800	3.233	0.176E-01	0.000E+00	-0.126E-01	0.118E+03	0.256E+03	0.300E+03	2
1	011	-2.933	3.387	0.157E-01	0.000E+00	-0.120E-01	0.903E+02	0.272E+03	0.300E+03	2
1	012	-2.933	3.387	0.157E-01	0.000E+00	-0.120E-01	0.903E+02	0.272E+03	0.300E+03	2
1	012	-3.067	3.541	0.139E-01	0.000E+00	-0.113E-01	0.626E+02	0.284E+03	0.300E+03	2
	013	-3.200	3.695	0.122E-01	0.000E+00	-0.106E-01	0.349E+02	0.291E+03	0.281E+03	1
	013	-3.333	3.849	0.106E-01	0.000E+00	-0.991E-02	0.106E+02	0.295E+03	0.245E+03	1
	013	-3.467	4.003	0.914E-02	0.000E+00	-0.919E-02	-0.104E+02	0.295E+03	0.211E+03	1
1	014	-3.467	4.003	0.914E-02	0.000E+00	-0.919E-02	-0.104E+02	0.295E+03	0.211E+03	1
1	014	-3.600	4.157	0.778E-02 0.653E-02	0.000E+00	-0.849E-02	-0.284E+02	0.292E+03 0.286E+03	0.1/9E+03 0.151E+03	1
1	015	-3.733	4.311	0.653E-02	0.000E+00	-0.778E-02	-0.436E+02	0.286E+03	0.151E+03	1
	015	-3.867	4.465	0.538E-02	0.000E+00	-0.710E-02	-0.563E+02	0.278E+03	0.124E+03	1
1	015	-4.000	4.619	0.434E-02	0.000E+00	-0.644E-02	-0.666E+02	0.269E+03	0.100E+03	1
	016	-4.000	4.619	0.434E-02 0.340E-02	0.000E+00	-0.644E-02	-0.666E+02	0.269E+03	0.100E+03	1
1	016	-4.267	4.927	0.255E-02	0.000E+00	-0.519E-02	-0.812E+02	0.246E+03	0.589E+02	1
	017	-4.267	4.927	0.255E-02	0.000E+00	-0.519E-02	-0.812E+02	0.246E+03	0.589E+02	1
1	017	-4.400	5.081	0.180E-02	0.000E+00	-0.462E-02	-0.858E+02	0.233E+03	0.415E+02	1
	017	-4.533	5.235	0.113E-02	0.000E+00	-U.4U6E-02	-0.889E+02	0.220E+03	0.261E+02	1
1	018	-4.667	5.389	0.546E-03	0.000E+00	-0.355E-02	-0.907E+02	0.206E+03	0.126E+02	1
1	018	-4.800	5.543	0.370E-04	0.000E+00	-0.306E-02	-0.913E+02	0.192E+03	0.854E+00	ĩ
1	019	-4 900	E E 42	0 2705-04	0.0005+00	-0.2065-02	-0.9125+02	0 1925+02	0.9545+00	1



# G.4.2. Exemple 2 : Pieu soumis à une déformée latérale g(z) du sol

Ce second exemple permet d'aborder le cas d'un pieu avec comportement élastoplastique du sol, soumis non plus à des efforts en tête, mais une poussée latérale du sol représentée par une "déformée libre" dite g(z).

L'exemple sera traité dans un premier temps pour des pieux verticaux de 18 m de longueur et 1 m de diamètre, avec déplacement imposé nul en tête. Une variante sera également proposée avec des pieux plus souples (35 cm de diamètre).

Une dernière partie de l'exemple illustre la saisie manuelle d'une loi de comportement à 3 paliers, plutôt que l'utilisation des paramètres pressiométriques.



#### G.4.2.1. Etape 1 : Comportement élastoplastique et courbe g(z)

Nous allons définir dans un premier temps des pieux de 1 m de diamètre et 18 m de longueur, avec un comportement élastoplastique du sol (défini à partir de résultats d'essais pressiométriques).

#### G.4.2.2. Saisie des données

- Choisir de créer un nouveau projet en sélectionnant le radio-bouton ONUVEau projet.
- Cliquer sur le bouton OK

Si Foxta est déjà ouvert, cliquer sur le menu "Fichier", "Nouveau projet".



## G.4.2.2.1. Assistant Nouveau projet

#### Cadre "Fichier"

- Renseigner le chemin du fichier en cliquant sur le bouton
- Donner un nom au fichier et l'enregistrer.

#### Cadre "Projet"

- Donner un titre au projet
- Saisir un numéro d'affaire
- Compléter avec un commentaire si besoin
- Laisser la case "Utiliser la base de données" décochée (nous n'utiliserons pas la base de données pour cet exemple), et cliquer sur le bouton Suivant.

Assistant nouveau projet		x
Fichier	N	louveau projet
Projet	ann Fries (Lerrasol (Foxta VS (FIECOEF EX 2)Exe	mpie 02a.1xp
Titre du projet (*) :	Exemple 02a	
Commentaires :	Exemple 02a Pieu sous déformée latérale du sol	
(*) Ces champs sont obligatoir	es 🔲 Utiliser la base de données 🛛 P	récédent Suivant

## G.4.2.2.2. Assistant Nouveau projet : Choix du module

Dans la fenêtre "Choix des modules", sélectionner le module PIECOEF+ puis cliquer sur le bouton Créer.

Assistant nouveau projet			×
Modules		Choix d	es modules
TASPIE+	PIECOEF+	TASPLAQ	TASNEG
TASSEDO		EONDROF	
1 module(s) sélectionné(s)	Utiliser la base	de données Précédent	Créer

La fenêtre de saisie des données PIECOEF+ apparaît alors.

Il convient de compléter les différents onglets de données, dans la zone droite de l'écran.



## G.4.2.2.3. Onglet "Paramètres"

Pieu #1/1 : Exemple 02a	
🔍 Paramètres 🛛 🛛 Sol/pieu 🔷 Cha	rgement extérieur sur le pieu 🛛 👁 Déformée libre du sol g(z)
Type de calcul	Paramètres généraux
Calcul de pieu sous solic	citations latérales
à partir des de	onnées pressiométriques (élastoplastique) 🗸 🗸
cas	où les sollicitations dues aux poussées latérales du sol do 🗸
Paramètres du calcul	
Titre du calcul	Exemple 02a
Cote de référence (m)	0,00
Angle d'inclinaison du pieu (°)	0,00 \$
Famille du pieu	Pas de famille 🗸 🗸
	Incrémentation du chargement
	t du calcul

Cet onglet comprend deux cadres :

Cadre "Type de calcul" : sélectionner

- liste déroulante 1 : Calcul de pieu sous sollicitations latérales
- liste déroulante 2 : A partir des données pressiométriques (élastoplastique)
- liste déroulante 3 : Cas où les sollicitations dues aux poussées du sol dominent

Cadre "Paramètres du calcul" :

- Titre du calcul : Exemple 02a
- Cote de référence : 0,0 m
- Angle d'inclinaison du pieu : 0° (pieu vertical)
- Famille du pieu : aucune
- Incrémentation du chargement : nous conserverons ici les valeurs par défaut.

Pour passer à l'onglet suivant, cliquer soit sur le nom de l'onglet "Sol/Pieu", soit sur le bouton **>**.



# G.4.2.2.4. Onglet "Sol/Pieu"



Cet onglet permet la définition des caractéristiques de sols et la de discrétisation du pieu.

Cadre "Définition des couches de sol" :

Créer trois couches de sol en cliquant sur le bouton 🗣 pour ajouter chacune des couches. Les données à saisir sont les suivantes :

Nom	Z _{base} (m)	E _M (kPa)	α	B (m)	Pf* (kPa)	PI* (kPa)
Couche de forme	-2,0	20000	0,33	1,0	700	1000
Argiles molles	-12,0	2000	0,50	1,0	100	200
Sables denses	-18,0	30000	0,33	1,0	2500	3500

Nota : nous n'utiliserons pas la base de données pour traiter cet exemple.

Cadre "Discrétisation du pieu" :

Les données à saisir sont les suivantes :

• Laisser la case "Prise en compte des efforts tranchants" décochée

Couche	h (m)	EI (kN.m ² )	n
Couche de forme	2,0	491000	10
Argiles molles	10,0	491000	30
Sables denses	6,0	491000	20

Le produit El défini ici correspond à un pieu en béton, de section circulaire pleine de 1 m de diamètre. Le module du béton est pris égal à 10 000 MPa.



La discrétisation a été définie en rapport avec l'épaisseur de chaque couche, mais sans chercher à retrouver le même pas de calcul dans chaque couche, ce qui n'est pas obligatoire et n'a aucune influence sur les résultats dès lors que le maillage est suffisamment raffiné.

Pieu #1/1 : Exem	ple 02a 🍃					• 💽 👔
🛛 Paramètres 🛛 🕄	iol/pieu 🝼 Chargemer	t extérieur sur le pieu	J 🛛 🛛 Déformée	libre du sol g(z)		
-Charges ponctuelles	normales au pieu	Charge	ment e	extérieur	sur le	e pieu
N°	Z	т	м	К	С	<u>/#</u> _
0	0,00	0,00	0,00	0,00E00	0,0	0E00
1	-2,00	0,00	0,00	0,00E00	0,0	0E00 🕙
2	-12,00	0,00	0,00	0,00E00	0,0	0E00
3	-18,00	0,00	0,00	0,00E00	0,0	0E00
Déplacements impo     M Translat     Cas de charge multip     Activer les cas de	sés en tête de pieu	0,00 3	Rotation im	posée ω (rad)	0,00	
Activer les charg	es réparties					5
		cement du calcul	và Voir les résult	ats		

#### G.4.2.2.5. Onglet "Chargement extérieur sur le pieu"

Cadre "Charges ponctuelles normales au pieu" :

Nous n'avons aucune charge à définir dans le cadre de cet exemple (la seule sollicitation appliquée au pieu est la courbe g(z)).

Cadre "Déplacements imposés en tête de pieu" :

Nous allons imposer un déplacement nul du pieu en tête.

Les données à saisir sont donc les suivantes :

	Case à cocher	valeurs
y (m)	Oui	0,00
ω (rad)	Non	-

Cadre "Cas de charge multiples en tête" :

• Laisser la case "Activer les cas de charge multiples en tête" décochée.

Cadre "Charges réparties normales au pieu" :

• Laisser la case "Activer les charges réparties" décochée.





# G.4.2.2.6. Onglet "Déformation libre du sol g(z)

Cadre "Définition de g(z)" :

- Cocher la case "Définir une déformée g(z)"
- Ouvrir l'assistant g(z) en cliquant sur le bouton pour calculer les valeurs de la déformée. Les données à introduire sont décrite ci-dessous.

Nota : la déformée libre g(z) peut être introduite directement par des couples (z, g(z)) quelconques. En particulier, il n'est pas nécessaire que les valeurs de "z" soient compatibles avec le maillage du pieu. En effet, le moteur de calcul applique systématiquement une ré-interpolation de ces valeurs afin d'exprimer les valeurs de g(z) aux points du calcul.

Cadre "Définition de l'horizon compressible" :

- Cote de toit de l'horizon Z1 (m) : ici, il s'agit du toit de la couche d'argiles molles (cote -2,0 m).
- Cote de base de l'horizon Z2 (m) : ici, il s'agit de la base de la couche d'argiles molles (cote -12,0 m). La courbe g(z) imposée porte donc uniquement sur l'épaisseur de la couche d'argiles molles.

Cadre "Définition adimensionnelle" :

• Les coefficients polynomiaux A1, A2, A3 et A4 (valeurs proposées par défaut en fonction du type de courbe (I ou II).



- La courbe EC7 :
  - ✓ I : Cas général
  - ✓ II : Cas d'une couche moins déformable en surface d'une hauteur significative (≥  $0.3 \times D$ ), ce qui est le cas ici.

Cadre Amplitude :

•  $G_{max}(m) = deplacement horizontal maximal du sol, pris egal à 5 cm.$ 

Les données à saisir sont les suivantes :

Z1 (m)	Z2 (m)	Courbe	A1	A2	A3	A4	G _{max} (m)
-2,0	-12,0	Π	0,50	1,50	0,00	-2,00	0,05

Assistant g(z) selon l'Eurocode 7
Définition de l'horizon compressible
Cote de toit de l'horizon Z1 (m) -2,0 🗘
Cote de base de l'horizon Z2 (m) -12,0 🗘
Définition adimensionnelle
A1 0,50 Courbes EC7
A2 1,50 C I
A3 0,00 C II
A4 -2,00 🗘
Amplitude
G _{max} (m) 0,0500 🗘
$g(z)=G_{max}^{*}(A1+A2*Z+A3*Z^{2}+A4*Z^{3}) \text{ avec } Z=(Z1-z)/(Z1-Z2)$
OK Annuler

Cliquer sur le bouton **OK** pour importer la courbe g(z) ainsi générée dans le projet en cours.

Cette courbe g(z) est représentée (en vert) sur la coupe du projet.



## G.4.2.3. Calcul et Résultats

### G.4.2.3.1. Calcul

Cliquer sur le bouton ( Lancer le calcul )

Pour accéder aux résultats sous forme de tableaux et de graphiques, cliquer sur le bouton Voir les résultats.

## G.4.2.3.2. Résultats

Courbes principales :



Flèche : dépl latéral (d	acement cm)	Moment flé M (kN	chissant .m)	Effort tranchant Réaction T (kN) sol		Réaction la sol p (	itérale du kPa)
Min	Max	Min	Max	Min	Max	Min	Max
-0,1	2,7	-964	776	-448	467	-114	737

L'introduction d'une déformée libre du sol g(z) se traduit dans le calcul par une réaction latérale non pas proportionnelle au déplacement du pieu y(z) mais au déplacement relatif du pieu par rapport au sol y(z) - g(z), ce qui explique l'obtention d'une réaction négative sur la hauteur de la couche d'argile puisque le déplacement obtenu du pieu est inférieur au déplacement libre du sol.



Cliquer sur le bouton Paramètres Groupie pour obtenir les coefficients de raideur (comme dans l'exemple 1, ceux-ci sont donnés ici à titre d'information, mais ne seront pas utilisés dans le cadre de l'exemple 2) :



L'obtention d'un terme à l'origine (T0, M0) non nul est synonyme d'une non-linéarité du comportement apparent en tête du pieu. Cela peut s'expliquer aussi bien par une plastification partielle du sol que par l'application d'un chargement sur le pieu autre que celui en tête.

Cliquer sur le bouton *Retour* pour retourner à la présentation des différents types de résultats, puis cliquer sur "Résultats formatés".

Ces résultats incluent notamment le détail de la courbe g(z).

Déformée libre	e du sol				
Noeud	cote	abscisse	g(z)	g(z)-projetée	
011	-2,000	2,000	0.0250	0.0250	
012	-2.333	2.333	0.0275	0.0275	
012	-2.333	2.333	0.0275	0.0275	
013	-2.667	2.667	0.0300	0.0300	
013	-2.667	2.667	0.0300	0.0300	
014	-3.000	3.000	0.0324	0.0324	
014	-3.000	3.000	0.0324	0.0324	
015	-3.333	3.333	0.0348	0.0348	
015	-3.333	3.333	0.0348	0.0348	
016	-3.667	3.667	0.0370	0.0370	
017	-3.007	4 000	0.0392	0.0370	
017	-4.000	4.000	0.0392	0.0392	
018	-4.333	4.333	0.0412	0.0412	
018	-4,333	4,333	0.0412	0.0412	
019	-4.667	4.667	0.0431	0.0431	
019	-4.667	4.667	0.0431	0.0431	
020	-5.000	5.000	0.0448	0.0448	
020	-5.000	5.000	0.0448	0.0448	
021	-5.333	5.333	0.0463	0.0463	
021	-5.333	5.333	0.0463	0.0463	
022	-5.667	5.667	0.0476	0.0476	
022	-5.667	5.667	0.0476	0.0476	
023	-6.000	6.000	0.0486	0.0486	
023	-6.000	6.000	0.0486	0.0486	
024	-6 222	6 222	0.0494	0.0494	
024	-6.667	6.555	0.0494	0.0494	
025	-6.667	6 667	0.0498	0.0498	
026	-7.000	7.000	0.0500	0.0500	
026	-7.000	7.000	0.0500	0.0500	
027	-7.333	7.333	0.0498	0.0498	
027	-7.333	7.333	0.0498	0.0498	
028	-7.667	7.667	0.0493	0.0493	
028	-7.667	7.667	0.0493	0.0493	
029	-8.000	8.000	0.0484	0.0484	
029	-8.000	8.000	0.0484	0.0484	
030	-8.333	8.333	0.04/1	0.04/1	
030	-8.333	8.333	0.04/1	0.04/1	
021	-0.007	0.007	0.0454	0.0454	
032	-9.000	9,000	0.0432	0.0432	
032	-9.000	9.000	0.0432	0.0432	
033	-9.333	9.333	0.0406	0.0406	
033	-9.333	9.333	0.0406	0.0406	
034	-9.667	9.667	0.0374	0.0374	
034	-9.667	9.667	0.0374	0.0374	
035	-10.000	10.000	0.0338	0.0338	
035	-10.000	10.000	0.0338	0.0338	
036	-10.333	10.333	0.0296	0.0296	
036	-10.333	10.333	0.0296	0.0296	
037	-10.667	10.667	0.0249	0.0249	
038	-11 000	11 000	0.0245	0.0245	
038	-11,000	11.000	0.0196	0.0196	
039	-11, 333	11,333	0.0137	0.0137	
039	-11.333	11.333	0.0137	0.0137	
040	-11.667	11.667	0.0072	0.0072	
040	-11.667	11.667	0.0072	0.0072	
041	-12.000	12.000	0.0000	0.0000	


## G.4.2.4. Variante de calcul avec un pieu plus souple

Cliquer sur le bouton ( Retour aux données ) pour pouvoir modifier les données.

### G.4.2.4.1. Modification des caractéristiques du pieu

OPeramètres         O Solylau         O Défonde like du sol g(2)	Sol/pieu Pr* Pr* Pr* 100,00 200,00 2500,00 3500,00
No         Cote de référence : 0.0 m           -2.0 m         -2.0 m           -12.0 m         -12.0 m	Sol/pieu P;* P;* 000,00 100,00 200,00 2500,00 3500,00
No         Cote de référence : 0.0 m         N°         Nom         Couleur         Zasse         Em         B         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35 </th <th>Pr* P * 700,00 1000,00 1000,00 200,00 2500,00 3500,00</th>	Pr* P * 700,00 1000,00 1000,00 200,00 2500,00 3500,00
N°         N°         Couleur         Z _{base} E _M a         B         0,33         0,33         0,33         0,33         0,33         0,33         0,33         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,35         0,3	Pr* Pr* Pr* 700,00 1000,00 100,00 200,00 2500,00 3500,00
1         Coute de référence : 0.0 m           -2.0 m         -2.0 m           -12.0 m         -12.0 m	700,00 1000,00 100,00 200,00 2500,00 3500,00
1         2         Argles moles         -12.00         2,0003         0,50         0,55           3         Sables deruses         -18,00         3,00004         0,33         0,35           -2.0 m         -12.0 m         -12.0 m         -12.0 m         Image: Control of the second	100,00 200,00 2500,00 3500,00
D         +         Cote de réference : 0.0 m           -2.0 m         -2.0 m           -12.0 m         -12.0 m	2500,00 3500,00
-2.0 m -12.0 m -12.0 m	
-12.0 m	
-12.0 m	
-12.0 m	
-12.0 m	
-12.0 m	
-12.0 m	
-12.0 m	
	📕 🚄 📚 🦄 🖛
Discretisation du pieu	
n Prise en compte des déformations d'effort tranchant	
Nom h EI	n
-18.0 m Couche de forme 2,00 7,37603	10
A construction of the second s	30
	20
- Elements Options	
Symb. Désignation Visible V Visible	📥 🗨
N Pieu 🗹	
Lancement du calcul	
Sol V V	

Dans l'onglet "Sol/Pieu", modifier le diamètre du pieu ainsi que son produit EI :

Cadre "Définition des couches de sol" :

• Diamètre de forage B : 0,35 m pour les trois couches de sol.

Cadre "Discrétisation du pieu" :

• Produit d'inertie du pieu EI = 7366 kN.m² sur toute la hauteur (toujours calculé pour un module de 10 000 MPa).

Enregistrer le projet sous un nom différent : "Exemple 02abis" par exemple.

Relancer le calcul en cliquant sur le bouton ( Lancer le calcul ).



# G.4.2.4.2. Résultats



Comparaison des résultats :

	Flèci déplace latéral	ne : ement (cm)	Mor fléchi M (k	nent ssant N.m)	Effort tra T (l	anchant kN)	Réaction I sol p	atérale du (kPa)
	Min	Max	Min	Max	Min	Max	Min	Max
B = 1,0 m	-0,1	2,7	-964	776	-448	467	-114	737
B = 0,35 m	-0.1	5,1	-33	75	-94	56	-165	947

On note que le pieu de 0,35 m de diamètre est plus souple, et suit donc plus la déformée libre du sol : le déplacement maximal du pieu de 5,06 cm est très voisin de celui de la déformée libre du sol g(z). Cela se reflète également par une faible réaction mobilisée dans la couche d'argile.

D'autre part, le pieu "encaisse" moins d'efforts et les moments et efforts tranchants dans le pieu sont donc beaucoup plus faibles.

Cliquer sur le bouton	😫 Retour	puis	sur	le	bouton	🙀 Retour aux données 🔵	pour	revenir	aux
données.									



## G.4.2.5. Etape 2 : Saisie manuelle de la loi de mobilisation

Nous allons à présent reprendre l'exemple précédent (variante avec B = 0.35 m), mais en optant pour une saisie manuelle de la loi de mobilisation à 3 paliers (plutôt que pour un comportement élastoplastique basé sur les résultats de l'essai pressiométrique).

Commençons par afficher les résultats formatés de l'étape précédente (calcul pour le pieu souple, avec B = 0.35 m).

roucho	hara	<b>C</b> T	514	alaka		. f	n]	
couche	pase	EI	EM	alpha	в	рт	p1	
01	-2.00	0.737E+04 0.737E+04	20000.00	0.33	0.350	700.00	1000.00	
03	-18.00	0.737E+04	30000.00	0.33	0.350	2500.00	3500.00	
Discréti	isation du	nieu (Paramètr	es du calculì					
brisereer	isacion da	preu (raraneer	cs du carcury					
Eléme	ent	×L	EI	ks1*B	p1*B	ks2*B	p2*B	>
001	L	0.200	0.7366E+04	0.5532E+05	0.2450E+03	0.2766E4	+05 0.3500E+03	
002	-	0.200	0.7366E+04	0.5532E+05	0.2450E+03	0.2766EH	+05 0.3500E+03	
003	1	0.200	0.73665+04	0.55522705	0.2450E+03	0.276664	+OF 0.3500E+03	
004		0.200	0.7366E+04	0.5532E+05	0.2450E+03	0.276654	+05 0.3500E+03	
006	5	0.200	0.7366E+04	0.5532E+05	0.2450E+03	0.2766E1	+05 0.3500E+03	
007	7	0.200	0.7366E+04	0.5532E+05	0.2450E+03	0.2766E4	+05 0.3500E+03	
008	3	0.200	0.7366E+04	0.5532E+05	0.2450E+03	0.2766E+	+05 0.3500E+03	
009	9	0.200	0.7366E+04	0.5532E+05	0.2450E+03	0.2766E+	+05 0.3500E+03	
010		0.200	0.7366E+04	0.5532E+05	0.2450E+03	0.2766E4	+05 0.3500E+03	
011	L	0.333	U.7366E+04	U.4494E+04	0.3500E+02	0.2247E+	+04 0.7000E+02	
012		0.333	0.73665+04	0.44945+04	0.3500E+02	0.2247E4	+04 0.7000E+02	
013	1	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.224764	+04 0.7000E+02	
015		0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E1	+04 0.7000E+02	
016	5	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E4	+04 0.7000E+02	
017	,	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E+	+04 0.7000E+02	
018	3	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E4	+04 0.7000E+02	
019	,	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E4	+04 0.7000E+02	
020		0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E+	+04 0.7000E+02	
021	L	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E4	+04 0.7000E+02	
022		0.333	0.7366E+04	0.44946+04	0.3500E+02	0.224/E4	+04 0.7000E+02	
023		0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E4	+04 0.7000E+02	
025		0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E4	+04 0.7000E+02	
026	5	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E+	+04 0.7000E+02	
027	,	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E4	+04 0.7000E+02	
028	3	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E4	+04 0.7000E+02	
029	2	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E4	+04 0.7000E+02	
030	,	0.333	U./366E+U4	0.4494E+04	0.3500E+02	0.224/E1	+04 0.7000E+02	
031	2	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.224/E1	+04 0.7000E+02	
032		0.333	0.7366E±04	0.4494E+04	0.3500E+02	0.224764	+04 0.7000E+02	
034	1	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E+	+04 0.7000E+02	
035		0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E+	+04 0.7000E+02	
036	5	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E4	+04 0.7000E+02	
037		0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E+	+04 0.7000E+02	
038	3	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.2247E4	+04 0.7000E+02	
035	,	0.333	0.7366E+04	0.4494E+04	0.3500E+02	0.224/E1	+04 0.7000E+02	
040	,	0.333	0.7366E+04	0.44946+04	0.3500E+02	0.224/E1	+04 0.7000E+02	
042	, ,	0.300	0.7366E+04	0.8298E+05	0.8750E+03	0.4149E4	+05 0.1225E+04	
043		0.300	0.7366E+04	0.8298E+05	0.8750E+03	0.4149E+	+05 0.1225E+04	
044	ŧ	0.300	0.7366E+04	0.8298E+05	0.8750E+03	0.4149E4	+05 0.1225E+04	
045	5	0.300	0.7366E+04	0.8298E+05	0.8750E+03	0.4149E+	+05 0.1225E+04	
046	5	0.300	0.7366E+04	0.8298E+05	0.8750E+03	0.4149E+	+05 0.1225E+04	
047	,	0.300	0.7366E+04	0.8298E+05	0.8750E+03	0.4149E4	+05 0.1225E+04	
048	5	0.300	U.7366E+04	U.8298E+05	U.8750E+03	0.4149E4	+US 0.1225E+04	
049	,	0.300	0.7366E+04	0.82986+05	0.8750E+03	0.414964	+05 0.1225E+04	
051	í.	0.300	0.7366E+04	0.8298E+05	0.8750E+03	0.4149E4	+05 0.1225E+04	
052		0.300	0.7366E+04	0.8298E+05	0.8750E+03	0.4149E+	+05 0.1225E+04	
053	3	0.300	0.7366E+04	0.8298E+05	0.8750E+03	0.4149E4	+05 0.1225E+04	
054	4	0.300	0.7366E+04	0.8298E+05	0.8750E+03	0.4149E+	+05 0.1225E+04	
055		0.300	0.7366E+04	0.8298E+05	0.8750E+03	0.4149E+	+05 0.1225E+04	
056		0.300	0.7366E+04	U.8298E+05	U.8750E+03	0.4149E4	+US 0.1225E+04	
	e	0.300	U./366E+U4	U.8298E±U5	U.8/5UE+US	1.4.4963		

On peut trouver sur cet écran les valeurs des paramètres définissant la loi de mobilisation constituée par le moteur de calcul sur la base des données pressiométriques. Il s'agit d'une loi à trois paliers (voir figure ci-dessous) caractérisée par :

- Coefficient de réaction du sol au 1^{er} palier k_s1 (kPa/m)
- Pression de fluage (nette) du sol P1 au 1^{er} palier (kPa)
- Coefficient de réaction du sol au 2^{ème} palier k_s2 (kPa/m)
- Pression limite (nette) du sol P2 au 2^{ème} palier (kPa)

Dans les résultats formatés, chacune de ces valeurs est présentée multipliée par le diamètre du pieu B (0,35 m en l'occurrence).





Nous allons à présent réintroduire ces paramètres dans PIECOEF+ en mode de saisie manuelle de la loi de mobilisation, pour illustrer cette fonctionnalité.

## G.4.2.5.1. Onglet "Paramètres"

Revenir à la définition des données et à l'onglet "Paramètres.

Cadre type de calcul :

- liste déroulante 1 : conserver le "Calcul de pieu sous sollicitations latérales"
- liste déroulante 2 : sélectionner "avec saisie manuelle (3 paliers)".

Cadre "Paramètre de calcul" :

- Modifier le titre de votre calcul.
- Conserver les autres paramètres inchangés.





# G.4.2.5.2. Onglet "Sol/Pieu"

Les données à introduire sont celles décrites précédemment : P1 (kPa), P2 (kPa),  $k_s1$  (kPa/m) et  $k_s2$  (kPa/m).

Les valeurs à saisir ont été calculées à partir des résultats formatés présentés en copie d'écran (en divisant chacun des termes présentés par B) :

	k _s 1 (kPa/m)	P1 (kPa)	k _s 2 (kPa/m)	P2 (kPa)
Couche de forme	158057	700	79028,5	1000
Argiles molles	12840	100	6420,0	200
Sables denses	237086	2500	118543	3500

Paramètres	Sol/pieu uches de sol- Nom uche de for iles molles les denses couches : 3 pieu pte des défo	Couleur	Tort tranchant	r le pieu C k_1 1,58E05 1,28E04 2,37E05	P1 700,00 100,00 2500,00	k_2 7,90E04 6,42E03 1,19E05	P2 1000,00 200,00 3500,00	^B 0,33 0,3 0,3					
Définition des cou N° 1 Cou 2 Argi 3 Sabi 3 Sabi Nb de c Norrétisation du Prise en com Nom ouche de forme rgles moles ables denses	uches de sol- Nom uche de for lies molles les denses couches : 3 pieu pte des défo	Couleur	Z _{base} -2,00 -12,00 -18,00 Bases c	k_1 1,58E05 1,28E04 2,37E05	P1 700,00 100,00 2500,00	k_2 7,90E04 6,42E03 1,19E05	Sol/ P2 1000,00 200,00 3500,00 3500,00	"pie B 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3					
éfinition des cou     N	uches de sol- Nom uche de for iles molles les denses couches : 3 pieu pte des défo	Couleur	Z _{base} -2,00 -12,00 -18,00 Bases c	k_1 1,58E05 1,28E04 2,37E05	P1 700,00 100,00 2500,00	k_2 7,90E04 6,42E03 1,19E05	P2 1000,00 200,00 3500,00	B 0,33 0,32 0,32					
Nº 1 Cou 2 Argi 3 Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab Sab	Nom iche de for iles molles les denses couches : 3 pieu pte des défo	Couleur	Z _{base} -2,00 -12,00 -18,00 Bases c	k _s 1 1,58E05 1,28E04 2,37E05	P1 700,00 100,00 2500,00	k_2 7,90E04 6,42E03 1,19E05	P2 1000,00 200,00 35500,00	B 0,3 0,3 0,3					
1     Cou       2     Argi       3     Sab         Image: Sab   Nb de c iscrétisation du     Nom puche de forme gies moles ibles denses	iche de for lies molles les denses couches : 3 pieu pte des défo	rmations d'eff	-2,00 -12,00 -18,00 Bases c	1,58E05 1,28E04 2,37E05	700,00 100,00 2500,00 )	7,90E04 6,42E03 1,19E05	1000,00 200,00 3500,00	0,3 0,3 0,3					
2 Argi 3 Sab	iles molles les denses	rmations d'eft	-12,00 -18,00 Bases of fort tranchant h	1,28E04 2,37E05	100,00 2500,00	6,42E03 1,19E05	200,00	0,3					
3 Sab	couches : 3 pieu	rmations d'eft	-18,00 Bases of fort tranchant h	2,37E05	)	1,19E05	3500,00	0,3					
Nb de co scrétisation du Prise en comy Nom vuche de forme giles moles bles denses	couches : 3 pieu pte des défo	rmations d'eft	Fort tranchant	de données	)		<b>1</b>						
iscrétisation du Prise en com Nom ouche de forme giles molles bles denses	pieu pte des défo	ormations d'eff	fort tranchant										
Nom puche de forme rgiles molles ables denses	1	_	h			iscrétisation du pieu Prise en compte des déformations d'effort tranchant							
giles molles ables denses			2.0	0	EI	27502	n 10						
bles denses			10.0	10	7	37E03	30						
			6.0	10	7.	.37E03	20						
Nb de c	Nb de découpages : 60												

Relancer le calcul en cliquant sur le bouton ( Lancer le calcul ).



# G.4.2.5.3. Résultats



A un ou 2 arrondis près (écarts minimes dus aux arrondis sur les valeurs de ks1 et ks2), les résultats sont identiques à ceux du calcul précédent, comme on pouvait l'attendre.

Cette fonctionnalité peut être utilisée dans la situation où la loi de mobilisation de la réaction du sol est définie à l'aide de données autres que celles du pressiomètre.

Précisons par ailleurs que la loi constituée par défaut par le moteur de calcul est valable pour un pieu isolé de section enveloppe circulaire ou rectangulaire faiblement élancée. La prise en compte d'un effet de groupe ou d'une section rectangulaire élancée (barrette) peut impacter le calcul des différents paliers et nécessiter soit une correction des paramètres pressiométriques à entrer dans le modèle, soit une définition manuelle directe (voir le manuel d'utilisation).



# G.4.3. Exemple 3 : Calcul d'un puits métallique sous chargement multiple en tête

Cet exemple traite le cas d'un puits métallique de section circulaire creuse (2 m de diamètre et 5 cm d'épaisseur) soumis à une charge répartie trapézoïdale latérale dans sa partie supérieure, ainsi qu'à différents cas de charge en tête.

Ce puits métallique fait 10 m de profondeur et traverse 2 couches de sol : des alluvions en tête, puis un substratum.

On fait l'hypothèse de négliger la réaction latérale du sol sur l'épaisseur de la couche d'alluvions (3 m en tête).

L'exemple est traité d'abord sans prise en compte des déformations d'effort tranchant, puis dans une 2^{ème} étape avec prise en compte des déformations d'effort tranchant.



#### G.4.3.1. Saisie des données

- Choisir de créer un nouveau projet en sélectionnant le radio-bouton 
   Nouveau projet
- Cliquer sur le bouton ( 0K ).

Si Foxta est déjà ouvert, cliquer sur le menu "Fichier", "Nouveau projet".

#### G.4.3.1.1. Assistant Nouveau projet

#### Cadre "Fichier"

- Renseigner le chemin du fichier en cliquant sur le bouton .
- Donner un nom au fichier et l'enregistrer.

Cadre "Projet"

- Donner un titre au projet
- Saisir un numéro d'affaire
- Compléter avec un commentaire si besoin



• Laisser la case "Utiliser la base de données" décochée (nous n'utiliserons pas la base de données pour cet exemple), et cliquer sur le bouton Suivant.

Assistant nouveau projet			x
-Fichier Chemin du fichier (*) : C: \Pro Projet Titre du projet (*) : Numéro d'affaire (*) : Commentaires :	gram Files\Terrasol\FoXta v3\piecoef ex 3.fx piecoef ex 3 piecoef ex 3	Nouveau	in the second se
(*) Ces champs sont obligatoir	es 🔲 Utiliser la base de données	Précédent	Suivant

## G.4.3.1.2. Assistant Nouveau projet : Choix du module

Dans la fenêtre "choix des modules", sélectionner le module PIECOEF+ puis cliquer sur le bouton bouton

Assistant nouveau projet			x
Modules		Choix c	les modules
TASPIE+	PIECOEF+	TASPLAQ	TASNEG
TASSELDO	FONDSUP	FONDPROF	GROUPIE
1 module(s) sélectionné(s)	Utiliser la base	de données Précédent	Créer

La fenêtre de saisie des données PIECOEF+ apparaît.

Il convient à présent de compléter les différents onglets de données, dans la zone droite de l'écran.



# G.4.3.2. Onglet "Paramètres"

🛛 Paramètres 🖉 Sol/pieu 🖉 Chargeme	nt extérieur sur le pieu 🕺 💐 Déformée libre du sol g(z)
-Type de calqui	Paramètres généraux
Calcul de pieu sous sollicitation	s Jatérales v s pressiométriques (élastoplastique) v
Cas où let	sollicitations de courte durée en tête dominent
Paramètres du calcul	
Titre du calcul	Exemple 3 a
Cote de référence (m)	2,00 🗘
Angle d'inclinaison du pieu (°)	0,00 3
Famille du pieu	Pas de famille
	ment du calcul

Cadre "Type de calcul" : sélectionner

- liste déroulante 1 : Calcul de pieu sous sollicitations latérales
- liste déroulante 2 : A partir des données pressiométriques (élastoplastique)
- liste déroulante 3 : Cas où les sollicitations de courte durée dominent (les cas de charge étudiés correspondent ici à des charges variables et non à des charges permanentes)

Cadre "Paramètre du calcul" :

- Titre du calcul : Exemple 3a
- Cote de référence : 2,0 m
- Angle d'inclinaison du pieu : 0° (pieu vertical)
- Famille du pieu : aucune
- Incrémentation du chargement : nous conserverons ici les valeurs par défaut.

Pour passer à l'onglet suivant, cliquer soit sur le nom de l'onglet "Sol/Pieu", soit sur le bouton **>**.



# G.4.3.3. Onglet "Sol/Pieu"

Cet onglet permet la définition des caractéristiques des couches de sol et la discrétisation du pieu.



Cadre "Définition des couches de sols" :

Les données à saisir sont les suivantes :

Nom	Z _{base} (m)	E _M (kPa)	α	B (m)	Pf* (kPa)	PI* (kPa)
Alluvions	-1,0	0,1	0,33	2,00	0,10	0,10
Substratum	-8,0	200000	0,25	2,00	4000	6000

On note les caractéristiques volontairement réduites sur l'épaisseur des alluvions (3 premiers mètres en surface) : cela correspond à l'hypothèse de réaction latérale négligée sur cette épaisseur de 3 m.

Nota : il est préférable de saisir des valeurs très faibles plutôt que des valeurs nulles.



Cadre "Discrétisation du pieu" :

Les données à saisir sont les suivantes :

• Conserver la case "Prise en compte des efforts tranchants" décochée.

Nom	h (m)	EI (kN.m ² )	n
Alluvions	3,0	3,06E7	20
Substratum	7,0	3,06E7	60

Le produit El est calculé ici de la façon suivante, s'agissant d'une section métallique circulaire creuse de 2 m de diamètre et de 5 cm d'épaisseur :

$$EI = E_{acier} \left[ \frac{\pi D_{ext}^{4}}{64} - \frac{\pi D_{int}^{4}}{64} \right] = 3.06 \text{ x } 10^{7} \text{ kN.m}^{2}$$

# G.4.3.3.1. Onglet "Chargement extérieur sur le pieu"



Nous allons définir pour notre exemple une charge répartie normale au pieu entre les cotes 2 et -1, ainsi que plusieurs cas de charge différents en tête ("cas de charge multiple en tête").

Cadre "Charges ponctuelles normales au pieu" :

Nous n'avons aucune donnée à saisir dans ce cadre pour cet exemple.



Cadre "Cas de charge multiple en tête" :

 Cocher la case "Activer les cas de charge multiples en tête" et ajouter une ligne pour chaque cas de charge à l'aide du bouton

Les données à saisir sont les suivantes :

N°	T (kN)	M (kN.m)
1	4000	5000
2	6000	0,00
3	8000	-15000
4	0	-15000

Cadre "Charges réparties normales au pieu" :

Les données à introduire sont :

- la cote du toit de la charge Z1 (m) (cotes proposées automatiquement au niveau des limites de couche)
- la cote de la base de la charge Z2 (m) (cotes proposées automatiquement au niveau des limites de couche)
- la valeur de la charge répartie au toit de la couche Ch.1 (kPa)
- la valeur de la charge répartie à la base de la couche Ch.2 (kPa)

Les données à saisir sont les suivantes :

N°	Z1 (m)	Z2 (m)	Ch.1 (kPa)	Ch.2 (kPa)
1	2,0	-1,0	0	1500
2	-1,0	-8,0	0	0

Le chargement réparti défini correspond à un chargement trapézoïdal appliqué entre les cotes 2 et -1. Ce chargement est représenté sur la coupe du projet.

#### G.4.3.4. Onglet "Déformée libre du sol"

Aucune donnée à saisir dans cet onglet.

#### G.4.3.5. Calcul et Résultat

## G.4.3.5.1. Calcul

Cliquer sur le bouton ( Lancer le calcul )

Pour accéder aux résultats sous forme de tableaux et de graphiques, cliquer sur le bouton Voir les résultats



# G.4.3.5.2. Résultats

#### Courbes principales











Commentaires sur les résultats :

- On retrouve pour les 3 cas de charge le fait que la réaction latérale est nulle entre 0 et 3 m de profondeur.
- On retrouve pour chacun des cas de charge les conditions (T, M) imposées en tête.
- Les 3 premiers cas de charge (valeur de T non nulle) conduisent au même type de comportement du pieu : déplacement maximal en tête, orienté vers la droite (dans le sens de l'effort T imposé), moment maximal en ventre, moment et effort tranchant nuls à la base du pieu, saturation de la réaction latérale (plastification) du sol sur une épaisseur de 1,0 à 1,5 m sous la zone de réaction latérale négligée.
- Le dernier cas de charge (fort moment négatif en tête avec T=0) conduit à un comportement différent : déplacement latéral maximal en tête mais orienté vers la gauche (du fait du moment en tête négatif), moment maximal en tête (correspondant à la valeur imposée de 15000 kN.m), pas de plastification du sol (le pieu se déplace dans l'autre sens, et beaucoup moins que pour les 3 premiers cas de charge).

## G.4.3.6. Etape 2 : Prise en compte des déformations d'effort tranchant

On reprend ici le même exemple, mais cette fois avec prise en compte des déformations d'effort tranchant.

La contribution de ces déformations est généralement négligeable quand le rapport "longueur/diamètre" est supérieur à 10 voire à 20 (hypothèse des poutres minces). Pour des pieux de faible élancement comme des puits par exemple, cette hypothèse n'est plus valide et il peut s'avérer nécessaire d'adopter le modèle général des poutres épaisses qui nécessite de définir, en plus du produit d'inertie, la rigidité du cisaillement GS' prise égale au produit du module de cisaillement G par la section réduite S' (voir manuel d'utilisation).

#### G.4.3.6.1. Modification des données

Pour modifier des données, cliquer sur le bouton ( Retour aux données ) et retourner sur l'onglet "Sol/Pieu" :

Cadre "Discrétisation du pieu" :

• Cocher la case "Prise en compte des déformations d'effort tranchant".

La colonne GS' (Rigidité de cisaillement - kN) apparaît.

• Saisir la valeur 1,237°7 kN dans cette colonne pour les deux couches.

Cette valeur est obtenue par le produit du module de cisaillement G du pieu par sa section réduite S' (pour une section circulaire creuse, la section réduite S' est prise égale à la moitié de la section totale du pieu, k = 0.5).

$$G = \frac{E}{2(1+\nu)} = \frac{210.10^6}{2(1+0,3)} = 80\ 770\ \text{MPa}$$

$$S' = \frac{S}{2} = \frac{\pi}{8} \left( D_{ext}^2 - D_{int}^2 \right) = 0,1531 \text{ m}^2$$



Pieu 1/1 : Ef	ffort tranchan	t 🍃								•
🛛 Paramètres	🛛 Sol/pieu	Chargement extérie	ur sur le pieu	🛛 Déformée libre	du sol g(z)					
- Définition des o	ouches de sol								S	ol/pieu
Nº	Nom	Couleur	Zbase	EM	a		В		P _f *	P *
1	Alluvions 1		-1,0	0 1,00E-01		0,33		2,00	0,10	0,10
2	Substratum		-8,0	0 2,00E05		0,25		2,00	4000,00	6000,00
Nb de	couches : 2		(	Bases de données	)				-	
Discrétisation d Prise en con	o pieu mpte des défo on	rmations d'effort trancha n	nt 3,00	EI 3,	06E07	(	GS'	1,24E07	n 20	)
Substratum			7,00	3,	06E07			1,24E07	60	)
Nb de	découpages :	80								<b>(</b>
			Lancement du	e calcul 😔 Voir I	es résultats	5				

Enregistrer votre projet sous un nom différent : "Exemple 03b" par exemple.

Relancer le calcul en cliquant sur le bouton Cancer le calcul .









Comparaison des résultats :

	Flèche : dé latéra	placement I (cm)	Moment fle (ki	échissant M N.m)	Effort tra (k	nchant T N)
	Min	Max	Min	Max	Min	Max
Chargement N° 1						
Sans déformations d'effort tranchant	-0,1	1,76	0,00	26015	-6885	8500
Chargement N° 1						
Avec déformations d'effort tranchant	-0,1	2,12	0,00	26015	-6647	8500
Chargement N° 2						
Sans déformations d'effort tranchant	-0,1	2,13	0,00	29387	-8007	10500
Chargement N° 2						
Avec déformations d'effort tranchant	-0,2	2,61	0,00	29387	-7768	10500
Chargement N° 3						
Sans déformations d'effort tranchant	-0,1	1,69	-15000	23265	-6544	12500
Chargement N° 3						
Avec déformations d'effort tranchant	-0,1	2,20	-15000	23265	-6365	12500
Chargement N° 4						
Sans déformations d'effort tranchant	-0,3	0,1	-15000	121	108	4500
Chargement N° 4						
Avec déformations d'effort tranchant	-0,3	0,0	-15000	0	0	4500

La prise en compte des déformations d'effort tranchant influe peu sur les sollicitations. En revanche, l'amplitude des déformations se trouve augmentée de 25% environ, ce qui implique une diminution de 25% de la raideur apparente en tête.

Notons par ailleurs qu'en prenant en compte les déformations d'effort tranchant, il n'y a plus d'égalité entre la distorsion et la première dérivée de la flèche.



# G.4.4. Exemple 4 : Flambement et 2nd ordre : étude de flambement d'un micropieu

On considère ici un micropieu réalisé dans un forage de 0,25 m de diamètre et de 13 m de longueur, et supposé parfaitement en.castré en tête.

Cet exemple illustre 2 aspects (traités en 2 étapes) :

- Un calcul spécifique de flambement (évaluation de la charge critique de flambement).
- Un calcul de quantification des effets du second ordre sous l'effet d'un chargement latéral.





# G.4.4.1. Etape 1 : Calcul de flambement

# G.4.4.1.1. Onglet "Paramètres"

Pieu 2/2 : Flambement a		
🛛 Paramètres 🖉 Sol/pieu 🖉 Chargement extérie	eur sur le pieu 🛛 🝼 Déformée libre du sol g(z)	
-Type de calcul	Par	amètres généraux
Calcul spécifique de flambement		~
avec saisie manuelle		~
Paramètres du calcul		
Titre du calcul	Flambement a	
Cote de référence (m)		0,00 🗘
Angle d'inclinaison du pieu (°)		0,00 😂
Famille du pieu	Pas de famile	V
	ancement du calcul To Lancer le calcul	

Cadre "Type de calcul" : sélectionner

- liste déroulante 1 : Calcul spécifique de flambement
- liste déroulante 2 : Avec saisie manuelle

Cadre "Paramètre du calcul" :

- Titre du calcul : Exemple 4a
- Cote de référence : 0,0 m
- Angle d'inclinaison du pieu : 0° (pieu vertical)
- Famille du pieu : aucune
- Incrémentation du chargement : nous conserverons ici les valeurs par défaut.

Pour passer à l'onglet suivant, cliquer soit sur le nom de l'onglet "Sol/Pieu", soit sur le bouton **>**.



# G.4.4.1.2. Onglet "Sol/Pieu"

Cet onglet permet la définition des couches de sol et de la discrétisation du pieu.



## Cadre "Définition des couches de sol" :

Créer trois couches de sol en cliquant sur le bouton P pour ajouter chacune des couches de sol. Les données à saisir sont les suivantes :

Nom	Z _{base} (m)	k _s (kPa/m)	B (m)
Couche 1	-4,0	20000	0,25
Couche 2	-10,0	2500	0,25
Couche 3	-13,0	100000	0,25

Cadre "Discrétisation du pieu" :

La case "Prise en compte des déformations d'effort tranchant" n'est pas accessible dans ce type de calcul.

Les données à saisir sont les suivantes :

Nom	h (m)	EI (kN.m ² )	n
Couche 1	4,0	1500	30
Couche 2	6,0	1500	30
Couche 3	3,0	1500	30



arges ponctuelles normales au pieu—	Charg	jement exterie	eur sur le pi
N ^o	Z	К	c
0	0.00	1.00E10	1.00E10
1	-4,00	0,00E00	0,00E00
2	-10,00	0,00E00	0,00E00
3	-13,00	0,00E00	0,00E00
			r
de charge multiples en tête			
Activer les cas de charge multiples e	n tête		
Activer les cas de charge multiples e	i de de		
arges réparties normales au pieu			
arges réparties normales au pieu Activer les charges réparties			
arges réparties normales au pieu Activer les charges réparties			
arges réparties normales au pieu			K
arges réparties normales au pieu Activer les charges réparties			K
arges réparties normales au pieu Activer les charges réparties			
arges réparties normales au pieu Activer les charges réparties			
arges réparties normales au pieu Activer les charges réparties			
arges réparties normales au pieu			

## G.4.4.1.3. Onglet "Chargement extérieur sur le pieu"

Cadre "Charges ponctuelles normales au pieu" :

On souhaite définir ici un encastrement en tête : on définit donc en tête (cote 0) des valeurs très élevées pour K et C, de manière à empêcher les déplacements et les rotations (il s'agit ici d'une condition d'appui et non pas d'une condition de chargement).

Les valeurs à saisir sont les suivantes :

N°	Z (m)	K (kN.m)	C (kN.m/rad)
0	0,00	1,0 ^e 10	1,0 ^e 10
1	-4,00	0,00	0,00
2	-10,00	0,00	0,00
3	-13,00	0,00	0,00

## G.4.4.1.4. Onglet Déformée libre du sol g(z)

Cet onglet n'est pas accessible ici.



## G.4.4.1.5. Calcul et Résultat

Cliquer sur le bouton 🕑 Lancer le calcul ).

Pour accéder aux résultats sous forme de tableaux et de graphiques, cliquer sur le bouton Voir les résultats

#### Courbes relatives au flambement

La seule courbe disponible dans les résultats pour ce calcul est la suivante (les courbes principales ne sont pas disponibles ici). Cette fenêtre présente le mécanisme de flambement potentiel ainsi que la charge critique de flambement correspondante qui vaut ici 2725 kN.



Des résultats complémentaires sont également accessibles depuis le fichier de résultats formatés, qui fournit en particulier l'ensemble des charges de flambement pour chaque mécanisme. Le phénomène de flambement est susceptible de se produire quand l'effort axial est proche de l'une de ces charges de flambement (généralement, on s'assure que l'effort axial demeure inférieur, avec une sécurité suffisante, à la plus petite charge de flambement, dite charge critique).



Charges de flamb	ement pour chaque mode
Mode	Charge
001	0.273E+04
002	0.303E+04
003	0.473E+04
004	0.556E+04
005	0.615E+04
006	0.749E+04
007	0.861E+04
008	0.1062+05
010	0.1495+05
011	0.1695+05
012	0.191E+05
013	0.203E+05
014	0.226E+05
015	0.244E+05
016	0.280E+05
017	0.291E+05
018	0.324E+05
019	0.353E+05
020	0.390E+05
021	0.4292+05
022	0.4/16+05
025	0.5182+05
025	0.612E+05
026	0.664E+05
027	0.718E+05
028	0.776E+05
029	0.836E+05
030	0.898E+05
031	0.963E+05
032	0.103E+06
033	0.110E+06
034	0.1182+06
035	0.1252+06
036	0.1425+06
038	0.150E+06
039	0.160E+06
040	0.169E+06
041	0.179E+06
042	0.189E+06
043	0.199E+06
044	0.210E+06
045	0.221E+06
046	0.232E+06
047	0.244E+06
048	0.25/E+06
049	0.2692+06
050	0.2010100
052	0.310E+06
053	0.322E+06
054	0.335E+06
055	0.351E+06

Xn	Yn
0.000	-0.150E-07
0.133	0.548E-03
0.267	0.229E-02
0.400	0.541E-02
0.533	0.100E-01
0.667	0.163E-01
0.800	0.241E-01
0.933	0.334E-01
1.067	0.442E-01
1.200	0.562E-01
1.333	0.691E-01
1.46/	0.825E-01
1.600	0.9602-01
1 967	0.1032+00
2 000	0.1216+00
2 133	0 1385+00
2,267	0.142E+00
2,400	0.141E+00
2.533	0.135E+00
2.667	0.123E+00
2.800	0.105E+00
2.933	0.782E-01
3.067	0.436E-01
3.200	0.400E-03
3.333	-0.515E-01
3.467	-0.112E+00
3.600	-0.181E+00
3./33	-0.25/E+00
4.000	-0.4255+00
4 200	-0.557E+00
4.400	-0.685E+00
4,600	-0.802E+00
4.800	-0.897E+00
5.000	-0.965E+00
5.200	-0.100E+01
5.400	-0.997E+00
5.600	-0.955E+00
5.800	-0.873E+00
6.000	-0.754E+00
6.200	-0.603E+00
6.400	-0.426E+00
6.600	-0.231E+00
6.800	-0.263E-01
7.000	0.1/8E+00
7.400	0.5746+00
7.600	0.703E+00
7,800	0.822E+00
8,000	0.905E+00
8,200	0,949E+00
8.400	0.955E+00
8.600	0.923E+00



# G.4.4.2. Etape 2 : Quantification des effets de 2nd ordre sous l'effet d'un chargement latéral

Nous allons utiliser la même coupe de sol et le même pieu, mais nous allons nous intéresser cette fois à la quantification des effets du second ordre sous l'effet d'un chargement latéral.

Nous allons donc modifier les données par rapport à la première étape de cet exemple.

# G.4.4.2.1. Onglet "Paramètres"

Pieu 2/2 : Flambement a		• • •
🔍 Paramètres 🗋 👁 Sol/pieu 📋 👁 Chargement	extérieur sur le pieu 📔 🗸 Déformée libre du	sol g(z)
_Type de calcul	Parar	nètres généraux
Calcul de pieu sous sollicitations	latérales	~
vec saisie manuelle (	2 pailers)	~
	<u> </u>	
Paramètres du calcul		
Titre du calcul	Flambement a	
Cote de référence (m)		0,00 😂
Angle d'inclinaison du pieu (°)		0,00 🗘
Famille du pieu	Pas de famille	Incrémentation du chargement
	ement du calcul	

Cadre "Type de calcul" :

 Sélectionner : "Calcul de pieu sous sollicitations latérales" ⇒ "Avec saisie manuelle (2 paliers)



## G.4.4.2.2. Onglet "Sol/pieu"

nition des (	couches de sol					on pr
No	Nom	Couleur	Z _{base}	k _s	Pmax	В
1	Couche 1		-4,00	2,00E04	400,00	
2	Couche 2		-10,00	2,50E03	100,00	
? Nb d	e couches : 3	Bas	ses de données		- 1	r 🔩
	lu pieu					
rétisation o Prise en co	mpte des déformation	ns d'effort tranchant				
rétisation o Prise en co	mpte des déformation	hs d'effort tranchant	_	EI	n	
rétisation o Prise en co N che 1	mpte des déformation	ns d'effort tranchant h	4,00	EI 1,50E03	n 30	
rétisation o Prise en co r che 1 che 2 che 3	Impte des déformation	hs d'effort tranchant h	4,00 6,00 3,00	EI 1,50E03 1,50E03 1,50E03	n 30 30 30	
crétisation d Prise en co Indre 1 che 2 che 3	impte des déformation	is d'effort tranchant h	4,00 6,00 3,00	EI 1,50E03 1,50E03	n 30 30 30	

Cadre 'Définition des couches de sol" :

La colonne "Pression de plastification du sol"  $P_{max}$  (kPa) est apparue (du fait du choix de la saisie manuelle d'une loi de mobilisation à 2 paliers).

Les données à compléter sont les suivantes :

Nom	Z _{base} (m)	k _s (kPa/m)	P _{max} (kPa)	B (m)
Couche 1	-4,0	20000	400	0,25
Couche 2	-10,0	2500	100	0,25
Couche 3	-13,0	100000	3000	0,25

#### G.4.4.2.3. Onglet "Chargement extérieur sur le pieu"

Les données sur cet onglet restent inchangées par rapport à l'exemple précédent (encastrement en tête défini sous la forme de valeurs élevées pour K et C).



# G.4.4.2.4. Onglet "Déformée libre de sol g(z)"



L'onglet est à nouveau accessible (mode "Calcul de pieu sous sollicitations latérales"), et nous allons activer cette option pour imposer au pieu une sollicitation sous la forme d'un déplacement imposé du sol.

Cadre "Définition de g(z)" :

• Cocher la case 'définir une déformée g(z)".

Assistant g(z) selon l'Eurocode 7	×					
Définition de l'horizon compressible						
Cote de toit de l'horizon Z1 (m)	-4,0 🗘					
Cote de base de l'horizon Z2 (m)	-10,0 🗘					
Définition adimensionnelle						
A1 0,50 🗘	Courbes EC7					
A2 1,50 🗘	I					
A3 0,00 🗘	п					
A4 -2,00 🗘						
Amplitude						
G _{max} (m)	0,0500 🗘					
g(z)=G _{max} *(A1+A2*Z+A3*Z ² +A4*Z ³ ) avec Z=(Z1-z)/(Z1-Z2)						
ОК	Annuler					

Pour obtenir les valeurs de la courbe II dans la 2è couche (on définit ici g(z) entre les cotes -4 et -10 m), cliquer sur le bouton "Assistant"



Les valeurs à saisir sont les suivantes :

Z1 (m)	Z2 (m)	Courbe	A1	A2	A3	A4	G _{max} (m)
-4,0	-10,0	Π	0,50	1,50	0,00	-2,00	0,05

Enregistrer votre projet sous un nom différent : "Exemple 04b" par exemple

#### G.4.4.2.5. Calcul et résultats

Relancer le calcul en cliquant sur le bouton ( Lancer le calcul ) puis afficher les résultats

Les résultats obtenus appellent les commentaires suivants :

- ⇒ Résultats principaux : ceux-ci illustrent les défomations et sollicitations générées sous l'effet des poussées latérales du sol. Les sollicitations obtenues (moment fléchissant) sont de l'ordre de 18 kN.m.
- $\Rightarrow$  Flambement et effets de 2nd ordre
  - ✓ On note que la charge critique est inchangée par rapport au calcul de la première étape. Cela indique implicitement l'absence de toute plastification du sol ;
  - ✓ Le premier graphique compare le mécanisme de flambement critique à la déformée initiale du pieu obtenue sous le chargement latéral imposé. Si le pieu est amené à reprendre des charges axiales importantes, il convient d'éviter le cas d'une déformée initiale "imitant" le mécanisme de flambement potentiel, une situation qui favorise le développement des effets de 2nd ordre ;
  - ✓ Les 2^e et 3^e graphiques fournissent l'amplification des déplacements et sollicitations sous l'effet (de 2nd ordre) d'une charge axiale allant de 0 à 80% de la charge critique de flambement. En particulier, pour une charge axiale valant 80% de la charge critique, le moment fléchissant maximal est de l'ordre de 70 kN.m soit environ 4 fois sa valeur initiale. Ce constat est représentatif des situations où les effets de 2nd ordre impactent le dimensionnement du pieu et peuvent conduire à une ruine par flexion composée du matériau constitutif du pieu pour des niveaux de chargement axial bien inférieurs à la charge critique de flambement.





#### Courbes relatives au flambement :

