

Partie D : MODULE TASSELDO

D.1.	INTRODUCTION	5
D.2.	ASPECTS THEORIQUES	6
	D.2.1. Problème posé	6
	D.2.2. Contraintes	6
	D.2.3. Tassements D.2.3.1. Tassement unidimensionnel D.2.3.2. Tassement tridimensionnel (formule approchée de Steinbrenner) D.2.3.3. Tassement œdométrique	7 8 8 9
	D.2.4. Applications et limites	. 10
D.3.	MANUEL D'UTILISATION	. 11
	D.3.1. Onglet "Paramètres" D.3.1.1. Cadre "Paramètres généraux" D.3.1.2. Cadre "Importation"	. 11 . 11 . 12
	 D.3.2. Onglet "Couches" D.3.2.1. Cadre "Type de calcul" D.3.2.2. Cadre "Définition des couches de sols" D.3.2.3. Cadre "Paramètres du calcul oedométrique" 	. 13 . 13 . 13 . 13
	D.3.3. Onglet "Charges" D.3.3.1. Cadre "Charges sur le sol" D.3.3.2. Assistant de charges	. 15 . 15 . 17
	D.3.4. Onglet "Consolidation"D.3.4.1. Cadre "Définition de dates de consolidation"D.3.4.2. Cadre "Taux de consolidation par couche et par date"	. 23 . 23 . 23
	 D.3.5. Onglet "Calcul" D.3.5.1. Cadre "Définition des points de calcul" D.3.5.2. Assistants de points de calcul D.3.5.3. Ajustement en plan moyen 	. 24 . 24 . 26 . 32
	D.3.6. Calcul et résultats D.3.6.1. Calcul D.3.6.2. Résultats	. 32 . 32 . 32

D.4.	EXEMPLES DE CALCUL	
	D.4.1. Exemple 1	
	D.4.1.1. Introduction	
	D.4.1.2. Saisie des données	
	D.4.1.3. Calcul et résultats	
	D.4.2. Exemple 2	
	D.4.2.1. Présentation du problème	
	D.4.2.2. Saisie des données	
	D.4.2.3. Calcul et Résultats	

TABLE DES FIGURES

Figure D.1	: Charge verticale ponctuelle Q appliquée à la surface du sol	6
Figure D.2	: Charge uniforme q rectangulaire Méthode de superposition	7
Figure D.3	: Application de la formule de Steinbrenner	8
Figure D.4	: Variation de l'indice des vides e en fonction de $\Delta\sigma$ v	9
Figure D.5	: Onglet "Paramètres"	11
Figure D.6	: Assistant d'importation d'un fichier Tasplaq dans le module Tasseldo	12
Figure D.7	: Onglet "Couches"	13
Figure D.8	: Onglet "Charges"	15
Figure D.9	: Visualisation d'une charge particulière	16
Figure D.10	: Figure d'aide pour la définition des charges sur le sol	17
Figure D.11	: Chargements automatiques (assistants)	17
Figure D.12	: "Chargement circulaire uniforme"	18
Figure D.13	: Valeurs calculées : "Chargement circulaire uniforme"	19
Figure D.14	: "Chargement annulaire uniforme"	19
Figure D.15	: Valeurs calculées : "Chargement annulaire uniforme"	20
Figure D.16	: Exemple de chargement de type Talus 3D	21
Figure D.17	: Assistant : "Chargement type talus 3D"	21
Figure D.18	: Valeurs calculées : "Chargement de type talus 3D"	22
Figure D.19	: Onglet "Consolidation"	23
Figure D.20	: Onglet "Calcul"	24
Figure D.21	: Sélection d'un point de calcul – Représentation graphique	25
Figure D.22	: Exemple de représentation graphique en vue de côté	26
Figure D.23	: Points de calcul situés le long d'un segment	26
Figure D.24	: Valeurs calculées : Points de calcul situés le long d'un segment	27
Figure D.25	: Points de calcul situés le long d'un cercle horizontal	28
Figure D.26	: Valeurs calculées : Points de calcul situés le long d'un cercle horizontal	28
Figure D.27	: Points de calcul répartis sur un rectangle horizontal	29
Figure D.28	: Valeurs calculées : Points de calcul répartis sur un rectangle horizontal	29
Figure D.29	: Points de calcul répartis sur un quadrilatère horizontal	30
Figure D.30	: Valeurs calculées : Points de calcul répartis sur un quadrilatère horizontal	30
Figure D.31	: Points de calcul répartis sur un disque horizontal	31
Figure D.32	: Valeurs calculées : Points de calcul situés sur un disque horizontal	31
Figure D.33	: Résultats numériques et graphiques	32
Figure D.34	: Résultats numériques : Résultats formatés – Rappel de données	33
Figure D.35	: Résultats numériques : Résultats formatés – Résultats (impression normale)	34
Figure D.36	: Résultats numériques : Résultats formatés – Résultats (impression détaillée)	35
Figure D.37	: Résultats numériques : Résultats formatés – Résultats (plan ajusté)	35
Figure D.38	: Résultats numériques : Contraintes et tassements	36
Figure D.39	: Résultats numériques : Tassements de consolidation (oedométriques)	37
Figure D.40	: Résultats graphiques : Contraintes et tassements	38
Figure D.41	: Résultats graphiques : Tassement de consolidation oedométrique	39
Figure D.42	: Résultats graphiques : Tassements à Z donnée	40

TABLE DES TABLEAUX

Tableau D.1 : Paramètres des couches de sol	14
Tableau D.2 : Paramètres de calcul oedométrique	14
Tableau D.3 : Paramètres pour la définition des charges	16
Tableau D.4 : Paramètres pour le chargement circulaire uniforme	18
Tableau D.5 : Paramètres pour le chargement annulaire uniforme	20
Tableau D.6 : Paramètres pour le chargement type Talus 3D	22
Tableau D.7 : Paramètres de consolidation	24
Tableau D.8 : Paramètres pour la définition des points de calcul situés le long d'un segment	27
Tableau D.9 : Paramètres pour la définition des points de calcul situés le long d'un cercle horizontal	28
Tableau D.10 : Paramètres pour la définition des points de calcul répartis sur un rectangle horizontal	29
Tableau D.11 : Paramètres pour la définition des points de calcul répartis sur un quadrilatère horizontal	30
Tableau D.12 : Paramètres pour la définition des points de calcul répartis sur un disque horizontal	31
Tableau D.13 : Détail des résultats numériques (contraintes et tassements)	36
Tableau D.14 : Détail des résultats numériques : Tassements de consolidation (oedométriques)	37

D.1. Introduction

Le module Tasseldo est un programme de calcul (basé sur des formules analytiques), de la variation de la contrainte verticale et du tassement vertical dans un massif élastique, homogène et isotrope, soumis à des charges rectangulaires uniformes, à la surface du sol.

Il permet de prendre en compte un sol multicouche horizontal, avec un comportement élastique et/ou oedométrique. Dans le cas d'un calcul oedométrique, il permet également la prise en compte des degrés de consolidation.

De multiples assistants sont disponibles pour la génération automatique d'un maillage de chargement et de points de calcul, ou l'importation de résultats du module Tasplaq (pressions d'interaction et points de calcul).

Enfin, il est possible d'ajuster un plan moyen de tassements par la méthode des moindres carrés.

D.2. Aspects théoriques

D.2.1. Problème posé

Soit un milieu élastique, homogène et isotrope, soumis à sa surface à un chargement appliqué sous forme de pression répartie (uniforme).

On cherche en tout point M(x,y,z) à connaître :

- la variation de la contrainte $\Delta \sigma_{zz}$ induite par le chargement Q à la surface,
- le tassement (unidimensionnel, tridimensionnel ou œdométrique).

D.2.2. Contraintes

Formule de Boussinesq : charge ponctuelle (Figure D.1)

Soit une charge verticale Q appliquée à la surface d'un massif semi-infini, homogène et isotrope (Figure D.1). La variation de la contrainte verticale en tout point N du massif a été donnée par

Boussinesq :

$$\Delta \sigma_{zz} = \frac{3.Q}{2.\pi . z^2} \cdot \left(\frac{1}{1 + \left(\frac{r}{z}\right)^2}\right)^{\frac{5}{2}}$$
(1)

Où :

z : la profondeur du point N,

r : la distance horizontale de N à la ligne d'action de Q.

Cette solution (établie pour un massif homogène) est indépendante des caractéristiques mécaniques (E et v) du sol.

Figure D.1 : Charge verticale ponctuelle Q appliquée à la surface du sol

Charge répartie (Figure D.2)

La solution $\Delta \sigma_{zz}$, due à une charge uniforme de densité q répartie sur une surface, est obtenue en intégrant la formule (1) sur la surface considérée. Dans le cas où la surface du chargement est un rectangle (l x b), où l est la longueur et b la largeur, la solution analytique en tout point appartenant à l'axe D passant par l'un des quatre coins du rectangle s'écrit (Figure D.2) :

$$\sigma_{zz} = q.k_o \qquad (2)$$

$$k_0 = \left[\frac{1}{2\pi}\right] \left[atg\left(\frac{l.b}{z.R_3}\right) + \frac{l.b.z}{R_3} \left(\frac{1}{R_1^2} + \frac{1}{R_2^2}\right)\right]$$
(3)

avec $R_1 = \sqrt{(l^2 + z^2)}; R_2 = \sqrt{(b^2 + z^2)}; R_3 = \sqrt{(l^2 + b^2 + z^2)}$

La contrainte verticale sous une charge rectangulaire est également indépendante des caractéristiques E et v (massif homogène).

Figure D.2 : Charge uniforme q rectangulaire Méthode de superposition

Le massif étant isotrope, homogène et élastique linéaire, on utilise la méthode de superposition pour calculer la variation de la contrainte $\Delta\sigma_{zz}$ et le tassement en tout point, pour tout chargement admissible. La solution est connue, par la formule (2), sous l'un des quatre coins du rectangle; on peut donc décomposer le problème d'une façon adaptée à la solution.

et

La solution s'écrit:

 $\sigma_{zz} = \sum_{i=1}^{n} \sigma_{zz}^{i}$

$$\varepsilon_{zz} = \sum_{i=1}^{n} \varepsilon_{zz}^{i}$$

n étant le nombre de problèmes à superposer.

D.2.3. Tassements

Les déformations verticales en un point M sont déduites de $\Delta \sigma_{zz}$, calculée par la formule (2), dans le cas du calcul de tassement unidimensionnel et œdométrique. Dans le cas de la déformation tridimensionnelle (formule de Steinbrenner), le tassement d'une couche donnée est calculé directement à partir de la géométrie du chargement en surface.

D.2.3.1. Tassement unidimensionnel

On fait l'hypothèse suivante : les déformations suivant x et y sont nulles (conditions œdométriques), seule la déformation ε_{zz} est non nulle. Le comportement du sol est supposé élastique; ε_{zz} est déduit de σ_{zz} par la loi :

$$\varepsilon_{zz} = \frac{\sigma_{zz}}{E_{oed}}; \qquad E_{oed} = E\left(\frac{(1-\nu)}{(1+\nu).(1-2\nu)}\right)$$
(4)

Avec :

Eœd : Module œdométrique,

E : Module de Young,

v : Coefficient de Poisson.

La contrainte intervenant dans les calculs est la valeur moyenne de la contrainte verticale dans la couche considérée. Le tassement unidimensionnel ΔH vaut alors :

$$\Delta H = \frac{\Delta \sigma_{zz}}{E_{oed}}.H$$

D.2.3.2. Tassement tridimensionnel (formule approchée de Steinbrenner)

Le calcul des tassements tridimensionnels est basé sur la formule approchée de Steinbrenner, qui découle des formules de Boussinesq (Terzaghi, 1943). Cette formule permet d'exprimer le tassement, sous le coin d'une charge rectangulaire uniforme L x B, d'une couche située entre les profondeurs D1 et D2, de module E et de coefficient de Poisson v :

$$\rho_{D1-D2} = \frac{qB}{E} ((1-v^2)(F_1(D_2) - F_1(D_1)) + (1-v-2v^2)(F_2(D_2) - F_2(D_1)))$$

Où :

$$\begin{cases} F_1(D) = \frac{1}{\pi} \left(l \ln\left(\frac{\left(1 + \sqrt{l^2 + 1}\right)\sqrt{l^2 + d^2}}{l\left(1 + \sqrt{1 + d^2 + l^2}\right)}\right) + \ln\left(\frac{\left(l + \sqrt{l^2 + 1}\right)\sqrt{1 + d^2}}{\left(l + \sqrt{1 + d^2 + l^2}\right)}\right) \right) \\ F_2(D) = \frac{d}{2\pi} \arctan\left(\frac{l}{d\sqrt{1 + d^2 + l^2}}\right) \qquad \text{avec} \quad d = \frac{D}{B} \text{ et } l = \frac{L}{B} \end{cases}$$

Figure D.3 : Application de la formule de Steinbrenner

D.2.3.3. Tassement œdométrique

a) Tassement œdométrique final

Le tassement œdométrique ΔH est déduit de la courbe œdométrique (Figure D.3) reliant l'indice des vides à la contrainte effective verticale σ'_v dans le sol : e = f(σ_{zz}), caractérisée par :

- Cs : coefficient de compressibilité en recompression ;
- C_c : coefficient de compressibilité vierge ;
- e_o : indice des vides initial ;
- σ_{o}' : contrainte effective géostatique initiale ;
- σ_p' : pression de consolidation ;
- t_c : coefficient de surconsolidation, par convention $t_c = \sigma_p'/\sigma_o'$ si $t_c > 0$

$$t_c = -(\sigma_p' - \sigma_o')$$
 si $t_c < 0$

On suppose que les déformations latérales sont nulles (l'hypothèse de déformation unidimensionnelle est valable) et que le volume des grains du squelette reste constant. La relation entre la variation du déplacement vertical et celle de l'indice des vides est définie par :

Figure D.4 : Variation de l'indice des vides e en fonction de $\Delta \sigma v$

Le tassement œdométrique ΔH dû à un accroissement de la contrainte effective $\Delta \sigma_{zz'}$ (calculée) dépend de l'état de référence et de l'histoire du chargement du sol :

• premier cas: sol normalement consolidé : $\sigma_0'=\sigma_p'$, le tassement œdométrique s'écrit :

si
$$\Delta \sigma'_{zz} > 0$$
, $\Delta H = H \cdot \frac{C_c}{1 + e_o} \cdot \left[\log_{10} \left(\frac{\sigma'_o + \Delta \sigma'_{zz}}{\sigma'_o} \right) \right]$ (5)
si $\Delta \sigma'_{zz} < 0$, $\Delta H = H \cdot \frac{C_s}{1 + e_o} \cdot \left[\log_{10} \left(\frac{\sigma'_o + \Delta \sigma'_{zz}}{\sigma'_o} \right) \right]$ (6)

deuxième cas: sol surconsolidé: σ₀'< σ_p'

Si σ_p '< $\Delta\sigma'_{zz}$ + σ_0 ' et $\Delta\sigma_{zz}$ '>0 (cas de charge), le tassement œdométrique s'écrit :

$$\Delta H = \frac{H_o}{(1+e_o)} \left[C_s \cdot \log_{10} \left(\frac{\sigma'_p}{\sigma'_o} \right) + C_c \cdot \log_{10} \left(\frac{\sigma'_o + \Delta \sigma'_{zz}}{\sigma'_p} \right) \right]$$
(7)

Si $\sigma_p' > \Delta \sigma_{zz}' + \sigma_o'$ alors le tassement ΔH se déduit de la formule (6).

b) Tassement à un instant t

On peut considérer que dans le domaine surconsolidé, la consolidation est beaucoup plus rapide que dans le domaine normalement consolidé.

Aussi, pour chaque couche, le degré de consolidation n'est appliqué qu'à la variation de contrainte dépassant la pression de consolidation.

A un instant t, on considère que la contrainte a pour valeur :

$$\sigma'_{v}(t) = \sigma'_{p} + U_{s}(t) \times \left(\sigma'_{0} + \Delta \sigma - \sigma'_{p}\right)$$

 $U_s(t)$, fourni couche par couche, doit être déduit d'un calcul de consolidation préalable (à réaliser avec un logiciel spécifique).

Le supplément de contrainte à un instant t s'écrit :

$$\Delta \sigma(t) = \sigma'_{v}(t) - \sigma'_{0}$$

La valeur ainsi évaluée est injectée dans celle des formules (5) à (7) qui est applicable.

D.2.4. Applications et limites

L'application des formules de Boussinesq du milieu semi infini élastique homogène isotrope est acceptable tant qu'il n'existe pas de différences de rigidité importantes entre les différentes couches.

Ceci est généralement le cas pour les sols susceptibles de déformations notables. Le cas d'une couche rigide surmontant une couche molle ne peut être traité de cette façon.

L'approche des déformations par l'élasticité (calcul 1D ou 3D) nécessite une évaluation correcte du module d'Young pour le domaine des contraintes et la plage des déformations anticipés sous l'ouvrage. Ceci est important dans le cas des sols granulaires où le module augmente avec la contrainte moyenne σ_m et diminue avec la déformation.

Les calculs réalisés montrent généralement peu de différences entre le calcul 1D ou le calcul 3D.

Burland a souligné que l'approche œdométrique pour estimer le tassement total sous une fondation fournissait un ordre de grandeur au moins équivalent à celui fourni par les méthodes de calcul les plus sophistiquées, pour tous les sols dont le comportement est approximativement «élastique» sous l'effet de charges verticales.

L'approche œdométrique inclut implicitement la variation de rigidité avec le niveau de chargement.

Les degrés de consolidation introduits pour le calcul du tassement en fonction du temps doivent être déduits d'un calcul de consolidation représentatif des conditions rencontrées (à réaliser avec un logiciel spécifique).

D.3. MANUEL D'UTILISATION

On présente dans ce chapitre :

• les paramètres d'entrée du module Tasseldo.

Certaines zones ne peuvent recevoir que des données ayant une signification physique (par exemple, un coefficient de Poisson doit toujours être strictement compris entre 0 et 0,5).

La fenêtre d'entrée des paramètres de calcul Tasseldo est constituée de 5 onglets distincts. Les données à compléter sur chaque onglet dépendent parfois de certains choix effectués par l'utilisateur : par exemple, les données liées au calcul oedométrique ne sont requises que si ce type de calcul a été demandé par l'utilisateur.

• les résultats fournis par le module Tasseldo. Là aussi, ils dépendent en partie des données saisies par l'utilisateur, et notamment du type de calcul.

Ce chapitre ne détaille pas l'interface utilisateurs proprement dite et ses manipulations (boutons, menus, etc) : ces aspects sont traités dans la partie C du manuel.

D.3.1. Onglet "Paramètres"

🛛 Paramètres	🛛 Couches 🖉	Charges 🖉 Consolidation 🖉 Calcul
		Paramètres généraux
Paramètres g	énéraux	
	Titre du calcul	Exemple 1
	Type d'impression	Impression normale O Impression détaillée
13		
-Importation-		
	(Importer un projet Tasseldo depuis Tasplaq)
	Г	Lancement du calcul
		(♥ Lancer le calcul) → Voir les résultats

Figure D.5 : Onglet "Paramètres"

D.3.1.1. Cadre "Paramètres généraux"

Cet onglet permet de définir

- le titre du calcul : 80 caractères maximum ;
- le niveau de détail pour les impressions : il s'agit en réalité du niveau de détail pour la génération du fichier de résultats numériques formatés (cf chapitre D.3.6.2.1).

D.3.1.2. Cadre "Importation"

Dans le module Tasseldo, il est possible d'importer un projet depuis le module Tasplaq.

En effet, dans le cadre d'un calcul Tasplaq, le logiciel Foxta édite un fichier .tso, format reconnu par le module Tasseldo. Ce fichier est destiné à être importé dans le module Tasseldo.

Sur l'onglet Paramètres, le bouton Importer un projet Tasseldo depuis Tasplaq...) ouvre l' "Assistant d'importation projet Tasseldo" qui permet de sélectionner le répertoire contenant le fichier *[TQ].tso issu du projet Tasplaq, puis d'effectuer l'import :

- Cadre "Répertoire d'importation" : indiquer le chemin du répertoire contenant le projet Tasseldo. Par défaut, Foxta indique le répertoire dans lequel se trouve le projet courant. Au besoin, aidez-vous du bouton Parcourir _____ pour sélectionner le répertoire souhaité. Il est possible que Foxta affiche un message d'avertissement lorsque la date du calcul est très ancienne et vous invite à vérifier les données du projet ;
- Les noms des projets Tasplaq disponibles s'affichent dans le cadre de gauche : en sélectionner un ;
- La date du calcul correspondant s'affiche sur la droite ;
- Des informations sur les données importées à partir du module Tasplaq s'affichent dans le cadre de droite.

Cliquer sur le bouton OK pour confirmer l'importation des données ou sur Annuler.

Figure D.6 : Assistant d'importation d'un fichier Tasplaq dans le module Tasseldo

Il est également possible d'exporter les résultats d'un calcul Tasplaq vers le module Tasseldo. Pour plus de détails, consulter le manuel d'utilisation Tasplaq (partie I).

D.3.2. Onglet "Couches"

Ce deuxième onglet permet la saisie des paramètres relatifs au comportement du sol.

Paramètres Couches Charges Consolidation Calcul	V Paramètres V Couches O Charges V Consolidation O Calcul
Type de calcul	Type de calcul
-Définition des courbes de sol	Définition des couches de sol
Toit de la première couche (m) 0,00 3	Toit de la première couche (m) 0,00 3
N° Nom Couleur Z _{base} E _{sol} v n 1 Argle verte 5,00 1,50604 0,33 3	No Couleur Z _{base} E _{sol} v Cs/(1+e0) tc Cc/(1+e0) v n 1 Argle ve -5,00 1,50604 0,33 0,10 1,10 0,30 21,00 3
Nb de couches : 1 Nb de découpages : 3	Nb de couches : 1 Nb de découpage : 3 Nb de découpage : 3
Paramétres du calcul oedométrique — Contrainte verticale effective appliquée au toit de la première couche σ^ (iPa) 0,00 ♀	Paramètres du calcul oedométrique Contrainte verticale effective appliquée au toit de la première couche er, d (Pa) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
Cote de la nappe Z _w (m) 0,00 ♀ Poids volumique de l'eau y _w (04/m ³) 10,00 ♀	Cote de la nappe Z _w (m) 0,00 ♥ Poids volumique de l'eau Y _w (R4/m ³) 10,00 ♥
Lancement du calcul	Lancement du calcul

Figure D.7 : Onglet "Couches"

Différentes informations sont accessibles en fonction du type de calcul sélectionné.

D.3.2.1. Cadre "Type de calcul"

Le choix du type de calcul permet à l'utilisateur d'indiquer s'il souhaite effectuer un calcul oedométrique en complément du calcul Elastique 3D et 1D.

Si le calcul "Elastique 3D, 1D et oedométrique" est sélectionné :

- Le tableau de définition des couches de sol comporte des colonnes supplémentaires ;
- Le cadre "Paramètres du calcul oedométrique" s'affiche ;
- L'onglet "Consolidation" est activé.

Nota : la combinaison des approches élastiques et oedométrique peut être utile par exemple pour effectuer un calage des modules élastiques des couches d'un projet sur le tassement oedométrique, ou dans le cas général d'un sol constitué d'une succession de sables et d'argiles.

D.3.2.2. Cadre "Définition des couches de sols"

Ce cadre comporte tout d'abord la saisie du toit de la première couche de sol, c'est-à-dire de la cote du TN (m). Elle doit être supérieure à la cote de la base de la première couche qui sera définie dans le tableau de définition des couches de sol juste dessous.

Le choix d'un calcul oedométrique nécessite de définir un paramètre de surconsolidation 't_c' comme suit :

- si $t_c > 0$ alors $t_c = \sigma'_p / \sigma'_v \sigma'_0$
- si $t_c < 0$ alors $t_c = -(\sigma'_p \sigma_{v'_0})$

Où $\sigma_{v'0}$ désigne la contrainte verticale effective initiale, et σ'_{p} la contrainte de pré-consolidation.

Le tableau suivant décrit les propriétés de sol à définir pour chaque couche :

Désignation	Unité	Valeur par défaut	Condition d'affichage	Valeur obligatoire	Contrôles locaux
Z : cote de la base de la couche	m	1 m sous la base de la couche au-dessus	Toujours	Oui	Valeurs strictement décroissantes
E : module d'Young	kPa	-	Toujours	Oui	> 0
v : coefficient de Poisson	-	-	Toujours	Oui	0 < v < 0,5
C _s /(1+e ₀) : indice de recompression (ou de gonflement)	-	-	Calcul oedométrique seulement	Oui si affichée	≥ 0
t _c : paramètre de surconsolidation	- ou kPa	-	Calcul oedométrique seulement	Oui si affichée	-
C _c /(1+e ₀) : coefficient de compressibilité vierge	-	-	Calcul oedométrique seulement	Oui si affichée	≥ 0
γ : poids volumique total de la couche (γ ' est automatiquement pris en compte si la couche est immergée, toujours introduire γ)	kN/m ³	-	Calcul oedométrique seulement	Oui si affichée	> 0
n : nombre de subdivisions de la couche (discrétisation pour les calculs)	-	1	Toujours	Oui	≥ 1

 Tableau D.1
 : Paramètres des couches de sol

Foxta permet d'enregistrer les couches de sol dans la base de données des sols du projet et/ou dans la base de données globale des sols en cliquant sur le bouton Bases de données.

Ceci permet d'enregistrer les couches de sol avec leurs paramètres et d'éviter de les saisir à nouveau lors de la création d'un nouveau module dans le projet en cours, ou d'un autre projet Foxta.

L'utilisation de la base de données des sols est décrite en détail dans la partie C du manuel.

D.3.2.3. Cadre "Paramètres du calcul oedométrique"

Ce cadre, visible uniquement si l'utilisateur a choisi un calcul oedométrique, permet de saisir les éléments suivants :

Désignation	Unité	Valeur par défaut	Condition d'affichage	Valeur obligatoire	Contrôles locaux
σ _{vo} ' : contrainte verticale effective appliquée au toit de la première couche	kPa	0,00	Toujours	Oui	≥ 0
$\mathbf{Z}_{\mathbf{w}}$: cote de la nappe	m	0,00	Toujours	Oui	-
γ_w : poids volumique de l'eau	kN/m ³	10,00	Toujours	Oui	> 0

Tableau D.2 : Paramètres de calcul oedométrique

D.3.3. Onglet "Charges"

🛛 Paramètres	Couches	🛛 Charges	Consolidatio	n 🎽 😳 Calcul							
Charges réparties											
Charges sur le sol											
Charge n°	Xr	Yr	Z _r	Lx	L _Y	θ	q _r	Groupe			
1	-0,72	-10,00	0,00	1,44	0,11	0,00	50,00	1			
2	-2,26	-9,89	0,00	4,52	0,33	0,00	50,00	1			
3	-3,64	-9,56	0,00	7,27	0,55	0,00	50,00	1			
4	-5,04	-9,01	0,00	10,08	0,75	0,00	50,00	1			
5	-6,22	-8,26	0,00	12,45	0,93	0,00	50,00	1			
6	-7,38	-7,33	0,00	14,76	1,10	0,00	50,00	1			
7	-8,26	-6,23	0,00	16,52	1,23	0,00	50,00	1			
8	-9,06	-5,00	0,00	18,13	1,35	0,00	50,00	1			
9	-9.55	-3.65	0.00	19.11	1.43	0.00	50.00	1			
10	-9,94	-2,23	0,00	19,89	1,48	0,00	50,00	1			
11	-10.00	-0.75	0.00	20.00	1.49	0.00	50.00	1			
12	-9.94	0.75	0.00	19.89	1.48	0.00	50.00	1			
13	-9 55	2 23	0.00	1911	1 43	0.00	50.00	1			
14	-9.06	3.65	0.00	18.13	1.35	0.00	50.00	1			
15	-8.26	5.00	0.00	16.52	1 23	0.00	50.00	1			
16	-7 38	6.23	0.00	14 76	1 10	0.00	50,00	1			
17	-6.22	7 33	0.00	12.45	0.93	0.00	50,00	1			
18	-5.04	8.26	0,00	10.08	0,55	0,00	50,00	1			
10	-3.64	9.01	0,00	7 27	0,55	0,00	50,00	1			
20	-3,04	9,01	0,00	4.52	0,33	0,00	50,00	1			
20	-2,20	9,50	0,00	4,52	0,55	0,00	50,00	1			
Lancement du calcul											

Figure D.8 : Onglet "Charges"

D.3.3.1. Cadre "Charges sur le sol"

Les chargements pris en compte dans le module Tasseldo sont obligatoirement rectangulaires. Toutefois, il est possible de définir des chargements de forme complexe en combinant des rectangles d'emprise équivalente.

Il est nécessaire de définir au moins un chargement rectangulaire non nul pour pouvoir effectuer un calcul de tassement. Les données à introduire pour chaque rectangle (c'est-à-dire sur chaque ligne de chargement dans le tableau de l'onglet "Charges") sont décrite dans le tableau suivant.

Nota :

- les charges peuvent être appliquées en surface (au niveau du TN), mais également à tout autre niveau ;
- cet onglet dispose d'un bouton Assistant a pour faciliter la définition des chargements. Voir le chapitre D.3.3.2.

Pour visualiser un chargement particulier, sélectionner une ligne dans le tableau des charges : le chargement correspondant est alors encadré en vert sur la représentation graphique dans la partie gauche de la fenêtre.

Désignation	Unité	Valeur par défaut	Condition d'affichage	Valeur obligatoire	Contrôles locaux
$\mathbf{X}_{r}, \mathbf{Y}_{r}, \mathbf{Z}_{r}$: Coordonnées du coin de référence du rectangle (l'axe Z est dirigé vers le haut)	m	-	Toujours	Oui	
L_x , L_y : dimensions suivant x et y local du rectangle	m	-	Toujours	Oui	
θ_r : angle que fait le côté L_x avec l'axe Ox (positif dans le sens trigonométrique)	o	-	Toujours	Oui	
q r : densité de charge uniforme sur le rectangle considéré	kPa		Toujours	Oui	≠ 0
Groupe (un groupe de charges correspond à un ensemble de rectangles de charge généré via l'assistant)	-	-	Si l'un des assistants "charges" a été utilisé	Complétée automatiquement	-

rabicad D.o . r drametres pour la deminior des charges	Tableau D.3	: Paramètres pour la définition des charges
--	-------------	---

Figure D.9 : Visualisation d'une charge particulière

Une figure d'aide est disponible pour illustrer la définition des charges : cliquer sur le bouton 😰 :

Figure D.10 : Figure d'aide pour la définition des charges sur le sol

D.3.3.2. Assistant de charges

Pour faciliter la définition de chargements "courants", cet onglet dispose d'un bouton Assistant qui permet de définir simplement :

- un chargement circulaire uniforme ;
- un chargement annulaire uniforme ;
- un chargement de type talus 3D.

La Figure D.11 illustre les différents assistants disponibles :

- Choisir le type de chargement ;
- Renseigner les différents champs de saisie ;
- Cliquer sur le bouton (Transférer).

La description du fonctionnement des fenêtres des différents chargements est expliquée dans les sous-chapitres suivants.

Nota : il est possible d'utiliser plusieurs assistants, ou plusieurs fois le même assistant Charges dans le cadre du même calcul Tasseldo.

Figure D.11 : Chargements automatiques (assistants)

D.3.3.2.1. Assistant : "Chargement circulaire uniforme"

Cet assistant permet de générer un groupe de charges rectangulaires équivalent à une charge circulaire uniforme.

Les données à introduire sont les suivantes :

Désignation	Unité	Valeur par défaut	Condition d'affichage	Valeur obligatoire	Contrôles locaux
Point A (X_A, Y_A, Z_A) : coordonnées du centre du disque	m	(0,0,0)	Toujours	Oui	
Rayon du disque chargé	m	-	Toujours	Oui	>0
Subdivisions	-	10	Toujours	Oui	>0
Densité de la charge	kPa	-	Toujours	Oui	-

Tableau D.4 : Paramètres pour le chargement circulaire uniforme

Figure D.12 : "Chargement circulaire uniforme"

La génération de charges rectangulaires représentant le chargement circulaire et le calcul de leurs propriétés X_r , Y_r , Z_r , L_X , L_Y , θ_r et q_r , sont activés par un clic sur le bouton (Transférer) :

Figure D.13 : Valeurs calculées : "Chargement circulaire uniforme"

D.3.3.2.2. Assistant : Chargement annulaire uniforme

Cet assistant permet de générer un groupe de charges rectangulaires équivalent à une charge annulaire uniforme

Figure D.14 : "Chargement annulaire uniforme"

Les données à introduire sont les suivantes :

Désignation	Unité par Condition Vale défaut d'affichage obliga		Valeur obligatoire	Contrôles locaux	
Point A (X_A, Y_A, Z_A) : coordonnées du centre de l'anneau	m	(0,0,0)	Toujours	Oui	
Rayon moyen de l'anneau	m	-	Toujours	Oui	> 0
Epaisseur de l'anneau	m	-	Toujours	Oui	> 0
Subdivisions	-	20	Toujours	Oui	> 0
Densité de la charge	kPa	-	Toujours	Oui	-

Tableau D.5 : Paramètres pour le chargement annulaire uniforme

La génération de charges rectangulaires représentant le chargement annulaire et le calcul de leurs propriétés X_r , Y_r , Z_r , L_X , L_Y , θ_r et q_r , sont activés par un clic sur le bouton Transférer :

Figure D.15 : Valeurs calculées : "Chargement annulaire uniforme"

D.3.3.2.3. Assistant : Chargement type Talus 3D

Cet assistant permet de générer un groupe de charges rectangulaires équivalent à un talus tridimensionnel.

Ci-après un exemple de chargement de ce type illustrant le cas général (valeur de charge différente en chacun des 4 points A, B, C et D).

Figure D.16 : Exemple de chargement de type Talus 3D

La définition correspondante dans l'assistant est la suivante :

Figure D.17 : Assistant : "Chargement type talus 3D"

Les données à introduire sont les suivantes :

Désignation	Unité	Valeur par défaut	Condition d'affichage	Valeur obligatoire	Contrôles locaux
Point A (X_A, Y_A, Z_A) : Coordonnées du coin inférieur gauche du talus	m	-	Toujours	Oui	
L_x : Longueur du talus	m	-	Toujours	Oui	> 0
L _y : Largeur du talus	m	- Toujours		Oui	> 0
$\boldsymbol{\theta}$: Orientation	0	-	Toujours	Oui	
$\mathbf{N}_{\mathbf{x}}$: Subdivisions suivant X	Sans	10	Toujours	Oui	≥2
N_y : Subdivisions suivant Y	Sans	10	Toujours	Oui	≥2
Densité de charge en A	kPa	-	Toujours	Oui	Au moins l'une des 3
Densité de charge en B	kPa	-	Toujours	Oui	valeurs doit être non
Densité de charge en D	kPa	-	Toujours	Oui	nulle
Densité de charge en C	kPa	-	Toujours	Oui	Calculée automatiquement à partir des 3 valeurs précédentes

Tableau D.6 : Paramètres pour le chargement type Talus 3D

La génération des rectangles de chargement représentant le chargement de type "Talus 3D" et le calcul de leurs propriétés X_r, Y_r, Z_r, L_X, L_Y, θ_r et q_r, sont activés par un clic sur le bouton (Transférer):

Figure D.18 : Valeurs calculées : "Chargement de type talus 3D"

D.3.4. Onglet "Consolidation"

Cet onglet n'est accessible que si l'option "Elastique 3D, 1D et oedométrique" de l'onglet "Couches" a été sélectionnée.

Pour prendre en compte la consolidation dans le cadre du calcul oedométrique, il faut tout d'abord cocher la case "Prise en compte de la consolidation", puis saisir les données requises dans les 2 cadres de l'onglet.

🛛 Paramètres 🛛 💐 Couches 🛛 💐 Charge	s 🔮 Consolidation 🔒 Cal	cul	
	Р	aramètres de	consolidation
🗹 Prise en compte de la consolidation			
Définition des dates de consolidation			
	date t ₁	date t ₂	date t ₃
Valeur de la date	1	2	5
aux de consolidation par couche et par	date		
Couche	Xu (t ₁)	Xu (t ₂)	Xu (t ₃)
Argile verte	20,0	50,0	100,0
	Lancement du calcul		
\checkmark	Lancer le calcul	Voir les résultats	

Figure D.19 : Onglet "Consolidation"

D.3.4.1. Cadre "Définition de dates de consolidation"

Ce cadre permet de définir les différentes dates de consolidation (croissantes) $t_1, t_2, ...t_i, ...t_{20}$ à prendre en compte, c'est-à-dire les dates pour lesquelles l'utilisateur devra ensuite définir le pourcentage de consolidation de chaque couche $X_u(t_i)$.

Les dates sont exprimées sans unités (car elles ne sont pas utilisées dans les calculs, mais uniquement à l'affichage) : c'est donc à l'utilisateur de définir des dates cohérentes entre elles.

L'ajout d'une date (bouton "+" sous le tableau) génère l'ajout d'une colonne dans le tableau.

D.3.4.2. Cadre "Taux de consolidation par couche et par date"

Il convient de définir ici le pourcentage de consolidation de chaque couche, pour chaque date définie ci-dessus. Le logiciel crée automatiquement une ligne par couche dans le tableau.

La valeur $X_u(t_i) = 100$ % correspond à une consolidation complète de la couche considérée à la date t_i .

Les pourcentages de consolidation saisis sont affectés à la base des couches actives. Lorsqu'une couche est subdivisée en plusieurs sous-couches, le programme réalise une interpolation linéaire des consolidations afin d'affecter, pour chaque date, un pourcentage de consolidation cohérent avec la position de chaque sous-couche.

Les paramètres à compléter sont les suivants :

Désignation	Unité	Valeur par défaut	Condition d'affichage	Valeur obligatoire	Contrôles locaux
Xu(t_i) : taux de consolidation de la couche indiquée à la date t _i	%	-	Toujours	Oui	0 ≤ Xu(t _i) ≤ 100 % Les valeurs de Xu doivent être croissantes (non strictement) avec le temps au sein d'une couche donnée

Tableau D.7 : Paramètres de consolidation

D.3.5. Onglet "Calcul"

Cet onglet permet de définir les points de calcul pour lesquels on souhaite évaluer le tassement et les contraintes. Il est nécessaire de définir au minimum un point de calcul.

Le choix de ces points doit se faire en fonction des besoins de l'étude : ces points sont ceux pour lesquels des résultats détaillés seront fournis dans les résultats. Ce sont également les points qui sont utilisés pour le calcul du plan moyen de tassement lorsque celui-ci est demandé.

iition des points de calcul			Cure
N°	Xp	Yp	Zp
1	0,00	0,00	0
2	0,00	0,00	0
3	0,00	0,00	0
4	0,00	0,00	0
5	0,00	0,00	0
6	0,00	0,00	0
7	0,00	0,00	0
8	0,00	0,00	0
9	0,00	0,00	0
10	0,00	0,00	0
11	0,00	0,00	0
12	0,00	0,00	0
13	0,00	0,00	0
14	0,00	0,00	0
15	0,00	0,00	0
16	0,00	0,00	0
17	0,00	0,00	0
18	0,00	0,00	0
19	0,00	0,00	0
20	0.00	0.00	0
			• 🖆 🐚 🐁 🔇

Figure D.20 : Onglet "Calcul"

D.3.5.1. Cadre "Définition des points de calcul"

Il convient de définir les coordonnées (X_P , Y_P , Z_P) (m) de chaque point de calcul que l'utilisateur souhaite définir.

Afin de faciliter la définition des points de calcul, il est possible d'utiliser l'un des assistants proposés (voir le chapitre suivant).

A noter :

- Il est recommandé de choisir une cote de début de calcul Zp située sur une limite de couches ;
- Les tassements et contraintes sont calculés uniquement à partir de (sous) la cote du point considéré ;
- La colonne "groupe" apparaît lorsque l'assistant de points de calcul a été utilisé : un groupe de points de calcul correspond à un ensemble de points de calcul généré via l'assistant ;
- L'application marque d'une croix verte dans la partie graphique le point sélectionné dans le tableau :

Figure D.21 : Sélection d'un point de calcul – Représentation graphique

Nota : la vue présentée par défaut dans l'espace graphique est la vue de dessus du projet. Il est possible, grâce aux boutons ^{Ovue de côté, plan Oyz} et ^{Ovue de côté, plan Oxz}, d'afficher également les vues de côté (plans Oyz ou Oxz).

Ces vues permettent par exemple de visualiser les chargements et points de calcul définis en profondeur.

Figure D.22 : Exemple de représentation graphique en vue de côté (plan Oyz)

D.3.5.2. Assistants de points de calcul

Ces assistants permettent de générer automatiquement des points alignés ou répartis selon des géométries prédéfinies. Ils sont accessibles par un clic sur le bouton .

Il est possible d'utiliser plusieurs assistants, ou plusieurs fois le même assistant de points de calcul dans le cadre du même calcul Tasseldo.

Après utilisation d'au moins un assistant "Points de calcul", le bouton 🔣 devient accessible : il permet de modifier le groupe de points de calcul sélectionné.

D.3.5.2.1. Points de calcul situés le long d'un segment

Cet assistant permet de générer automatiquement des points de calcul alignés sur un segment [A, B].

Figure D.23 : Points de calcul situés le long d'un segment

Les paramètres à compléter sont les suivants :

Désignation	Unité	Valeur par défaut	Condition d'affichage	Valeur obligatoire	Contrôles locaux
Point A (X_A, Y_A, Z_A) : Coordonnées du point A	m	-	Toujours	Oui	Les 2 points doivent
Point B (X_B, Y_B, Z_B) : Coordonnées du point B	m	-	Toujours	Oui	être distincts
Nombre de points	-	10	Toujours	Oui	≥2

 Tableau D.8
 : Paramètres pour la définition des points de calcul situés le long d'un segment

Lorsque les données de l'assistant sont complétées, cliquer sur le bouton **Transférer** : les points générés sont alors automatiquement copiés dans le tableau des points de calcul situé sur l'onglet "Calcul" :

Figure D.24 : Valeurs calculées : Points de calcul situés le long d'un segment

D.3.5.2.2. Points de calcul situés le long d'un cercle horizontal

Cet assistant permet de définir automatiquement des points de calcul alignés le long d'un cercle de centre A.

Figure D.25 : Points de calcul situés le long d'un cercle horizontal

Les paramètres à compléter sont les suivants :

Désignation	Unité	Valeur par défaut	Condition d'affichage	Valeur obligatoire	bire Contrôles locaux	
Point A (X _A , Y _A , Z _A)	m	-	Toujours	Oui		
Rayon du cercle	m	-	Toujours	Oui	> 0	
Nombre de points	-	10	Toujours	Oui	≥2	

Tableau D.9 : Paramètres pour la définition des points de calcul situés le long d'un cercle horizontal

Lorsque les données de l'assistant sont complétées, cliquer sur le bouton (Transférer) : les points générés sont alors automatiquement copiés dans le tableau des points de calcul situé sur l'onglet "Calcul" :

Figure D.26 : Valeurs calculées : Points de calcul situés le long d'un cercle horizontal

D.3.5.2.3. Points de calcul répartis sur un rectangle horizontal

Cet assistant permet de définir automatiquement un maillage de points de calcul répartis sur un rectangle horizontal [A, B, C, D].

Figure D.27 : Points de calcul répartis sur un rectangle horizontal

Les paramètres à compléter sont les suivants :

Désignation	Unité	Valeur par défaut	Condition d'affichage	Valeur obligatoire	Contrôles locaux
Point A (X _A , Y _A , Z _A)	m	-	Toujours	Oui	-
L_x : longueur du rectangle	m	-	Toujours	Oui	> 0
L_y : largeur du rectangle	m	-	Toujours	Oui	> 0
Nombre de points selon L_x	-	7	Toujours	Oui	≥2
Nombre de points selon L _y	-	7	Toujours	Oui	≥2

Tableau D.10 : Paramètres pour la définition des points de calcul répartis sur un rectangle horizontal

Lorsque les données de l'assistant sont complétées, cliquer sur le bouton **Transférer** : les points générés sont alors automatiquement copiés dans le tableau des points de calcul situé sur l'onglet "Calcul" :

Figure D.28 : Valeurs calculées : Points de calcul répartis sur un rectangle horizontal

D.3.5.2.4. Points de calcul répartis sur un quadrilatère horizontal

Cet assistant permet de définir automatiquement des points de calcul répartis sur un quadrilatère horizontal [A, B, C, D].

Figure D.29 : Points de calcul répartis sur un quadrilatère horizontal

Les paramètres à compléter sont les suivants :

Désignation	Unité	Valeur par défaut	Condition d'affichage	Valeur obligatoire	Contrôles locaux
Point A (X _A , Y _A , Z _A)	m	-	Toujours	Oui	
Point B (X _B , Y _B)	m	-	Toujours	Oui	Les 4 points doivent
Point C (X _c , Y _c)	m	-	Toujours	Oui	être distincts
Point D (X _D , Y _D)	m	-	Toujours	Oui	
Nombre de points sur AB , y compris les extrémités A et B	-	7	Toujours	Oui	≥2
Nombre de points sur AD, y compris les extrémités A et D	-	7	Toujours	Oui	≥2

Tableau D.11 : Paramètres pour la définition des points de calcul répartis sur un quadrilatère horizontal

Lorsque les données de l'assistant sont complétées, cliquer sur le bouton **Transférer** : les points générés sont alors automatiquement copiés dans le tableau sur l'onglet "Calcul" :

D.3.5.2.5. Points de calcul répartis sur un disque horizontal

Cet assistant permet de définir automatiquement des points de calcul répartis sur un disque de centre A.

Figure D.31 : Points de calcul répartis sur un disque horizontal

Les paramètres à compléter sont les suivants :

Désignation	Unité par défaut Condition défaut d'affichage o		Valeur obligatoire	Contrôles locaux	
Point A (X _A , Y _A , Z _A)	m	-	Toujours	Oui	
Rayon du disque	m	- Toujours		Oui	> 0
N _r : nombre de subdivisions radiales (nombre de cercles)	-	5	Toujours	Oui	≥ 1
N_{θ} : nombre de subdivisions orthoradiales (nombre de points sur chaque cercle)	-	10	Toujours	Oui	≥2

Tableau D.12 : Paramètres pour la définition des points de calcul répartis sur un disque horizontal

Lorsque les données de l'assistant sont complétées, cliquer sur le bouton (Transférer) : les points générés sont alors automatiquement copiés dans le tableau des points de calcul situé sur l'onglet "Calcul" :

Figure D.32 : Valeurs calculées : Points de calcul situés sur un disque horizontal

D.3.5.3. Ajustement en plan moyen

La liste déroulante permet de demander (ou non) le calcul d'un plan moyen de tassement en sélectionnant le choix qui convient. Les choix possibles sont les suivants :

- Aucun calcul de plan moyen ;
- Plan moyen 1D : calcul du plan moyen sur la base du tassement élastique 1D et des points de calcul définis ;
- Plan moyen 3D : calcul du plan moyen sur la base du tassement élastique 3D et des points de calcul définis ;
- Plan moyen oedo : calcul du plan moyen sur la base du tassement oedométrique et des points de calcul définis.

D.3.6. Calcul et résultats

D.3.6.1. Calcul

Le calcul peut se lancer depuis n'importe quel onglet à partir du moment où les onglets sont correctement renseignés, c'est-à-dire lorsqu'ils sont tous marqués d'une croix verte (par exemple : Couches).

Ceux-ci sont marqués d'une croix rouge (par exemple : <u>Couches</u>) tant qu'ils ne sont pas complétés correctement (données manquantes ou non conformes aux valeurs attendues).

Pour lancer le calcul, cliquer sur le bouton (Lancer le calcul)

D.3.6.2. Résultats

Pour afficher les résultats du calcul, cliquer sur le bouton (Voir les résultats).

La fenêtre suivante s'affiche alors et propose les différents types de résultats accessibles après un calcul Tasseldo :

Figure D.33 : Résultats numériques et graphiques

- 3 types de résultats numériques : résultats formatés, contraintes et tassements, et tassements et consolidation (oedométriques);
- 3 types de résultats graphiques : contraintes et tassements, tassements et consolidation (oedométriques), tassements en nuages de points.

Cliquer sur le bouton souhaité, en fonction du format des données.

Les chapitres suivants détaillent ces différents types de résultats.

D.3.6.2.1. Résultats numériques formatés

Cette fenêtre contient une synthèse des données de calcul et des résultats :

Tout	copier Cop	ier uniquem	ent la sélection						🙀 Retou
Caract	éristiques	des couch	es						
n	Z base	module	coef. Poisson	Cs/(1+e0)	Cc/(1+e0)	G			
1	-1.000	0.150E+05	0.330	0.100	0.300	21.000			
2	-2.000	0.150E+05	0.330	0.100	0.300	21.000			
3	-3.000	0.150E+05	0.330	0.100	0.300	21.000			
- 4	-4.000	0.180E+05	0.330	0.100	0.300	20.000			
6	-6.000	0.180E+05	0.330	0.100	0.300	20,000			
7	-7.000	0.180E+05	0.330	0.100	0.300	20.000			
8	-8.000	0.210E+05	0.330	0.100	0.500	23.000			
9	-9.000	0.210E+05	0.330	0.100	0.500	23.000			
10	-10.000	0.210E+05	0.330	0.100	0.500	23.000			
Contra	intes effec	tives au	centre des couche	5					
CC CC	te de référ te de la na	ence : appe :	0.000	contr poids	ainte vertica volumique ea	ale: 0.000 au: 10.0			
n	Cote	so'	sp'						
1	-0.500	10.500	11.550						
2	-1.500	31.500	34.650						
3	-2.500	52.500	57.750						
4	-3.500	73.000	73.000						
5	-4.500	88.000	88.000						
5	-5.500	108,000	108.000						
8	-7.500	119.500	155.350						
9	-8.500	132.500	172.250						
10	-9.500	145.500	189.150						
Surfac	es de charg	ges rectan	gulaires						
n	X0		YO	zo	LX	LY	teta(o)	q	
1	-0.7	21	-10,000	0.000	1 442	0 112	0.000	F0.000	
2	-2.7	59	-9.888	0.000	4,519	0.333	0.000	50.000	
3	-3.6	36	-9.556	0.000	7.271	0.546	0.000	50.000	
4	-5.0	042	-9.010	0.000	10.084	0.747	0.000	50.000	
5	-6.2	224	-8.262	0.000	12.449	0.932	0.000	50.000	
6	-7.3	579	-7.331	0.000	14.758	1.096	0.000	50.000	
8	-8.2	163	-5.000	0.000	18 126	1.235	0.000	50.000	
ğ	-9.5	54	-3,653	0.000	19,109	1,428	0.000	50,000	
10	-9.9	944	-2.225	0.000	19.888	1.478	0.000	50.000	
11	-10.0	000	-0.747	0.000	20.000	1.495	0.000	50.000	
12	-9.9	944	0.747	0.000	19.888	1.478	0.000	50.000	
13	-9.5	54	2.225	0.000	19.109	1.428	0.000	50.000	
14	-9.0	163	5.653	0.000	16.126	1.34/	0.000	50.000	
16	-8.2	179	6,235	0.000	14.758	1,255	0.000	50.000	
17	-6.2	24	7,331	0.000	12,449	0,932	0.000	50,000	
18	-5.0	042	8.262	0.000	10.084	0.747	0.000	50.000	
19	-3.6	536	9.010	0.000	7.271	0.546	0.000	50.000	
20 21	-2.2	259 721	9.556 9.888	0.000	4.519 1.443	0.333 0.112	0.000	50.000	
Degré	de consolic	lation par	couche						
date	5								
	1.0 2.0	5.0							

Figure D.34 : Résultats numériques : Résultats formatés - Rappel de données

Les résultats formatés contiennent :

- Un rappel des données (Figure D.34) : paramètres généraux, données de sol, chargements définis, etc. Cette section inclut également un tableau donnant les contraintes effectives σ'₀ et σ'_p au centre de chaque sous-couche (avec prise en compte de la discrétisation des couches pour définir les sous-couches);
- Soit les résultats en mode impression normale :
 - ✓ Le tableau synthétique des résultats pour les différents points de calcul (Figure D.35) :
 - Coordonnées (X, Y Z) du point de calcul (m)
 - T1d : valeur du tassement élastique 1D calculé au point considéré
 - T3d : valeur du tassement élastique 3D calculé au point considéré
 - Toedo : valeur du tassement oedométrique calculé au point considéré (seulement dans le cas où le calcul oedométrique a été demandé. Dans le cas contraire, la colonne ne comporte que des valeurs nulles).

Nota : les valeurs de tassements positives correspondent effectivement à des tassements (vers le bas). Les valeurs négatives correspondent à des soulèvements.

Progra	amme Tasse	eldo v2.0.4				(c) TERRASOL	2011				
File	File : E:\Users\mto\Documents\Z\MTO\Foxta V3\Projets\TASSEL 01\EXEMPLE 1 BIS\Exemple 1 bis[TD].Ali										
Calcu	Calcul réalisé le : 09/08/2012 à 10h42 par : Terrasol										
Titre	Titre du calcul : Exemple 1										
Caracte	Caractéristiques des couches										
n	Z base	module	coef.	Poisson	Cs/(1+e0)	Cc/(1+e0)	G				
1	-1.000	0.150E+05	0	. 330	0.100	0.300	21.000				
2	-2.000	0.150E+05	0	.330	0.100	0.300	21.000				
3	-3.000	0.150E+05	0	.330	0.100	0.300	21.000				
5	-5.000	0.180E+05	ő	.330	0.100	0.300	20.000				
6	-6.000	0.180E+05	ō	.330	0.100	0.300	20.000				
7	-7.000	0.180E+05	0	.330	0.100	0.300	20.000				
8	-8.000	0.210E+05	0	.330	0.100	0.500	23.000				
10	-10.000	0.210E+05	ő	.330	0.100	0.500	23.000				
Contra	intes effe	ectives au	centre de	s couche	5						
CO1 CO1	te de réfé te de la r	appe :	0.00	0	contr poids	ainte vertic volumique e	ale: 0.0 au: 10.0	000 D			
n	Cote	S0'	sp'								
1	-0.500	10.500	11.550								
2	-1.500	31.500	34.650								
4	-3.500	73,000	73.000								
5	-4.500	88.000	88.000								
6	-5.500	98.000	98.000								
7	-6.500	108.000	108.000								
ŝ	-8.500	132,500	172,250								
10	-9.500	145.500	189.150								
Surface	es de char	ges rectan	gulaires								
n	x)	YO		zo	LX	LY	te	ta(o)	q	
1	0.	000	0.000		0.000	10.000	20.000	ο.	000	100.000	
Tasseme	ents calcu	ılés									
Roint	×	×	7	Tid	Tad	Toedo					
	^	1	2	110	isd	10600					
1	0.000	0.000	0.000	0.009	0.0090	0.4026					
2	5.000	10.000	0.000	0.030	0.0345	1.0297					
3	0.000	10.000	0.000	0.017	4 0.0184	0.6694					
4	0.000	0.000	-2.000	0.015	7 0.0171	0.6340					
6	5.000	10.000	-2.000	0.021	7 0.0270	0.5545					
7	0.000	10.000	-2.000	0.012	9 0.0148	0.3342					
8	5.000	0.000	-2.000	0.011	2 0.0134	0.2994					
9	0.000	-10.000	-2.000	0.000	3 -0.0003	0.0063					

Figure D.35 : Résultats numériques : Résultats formatés – Résultats (impression normale)

- Soit les résultats en mode impression détaillée :
 - ✓ Un tableau de résultats pour chaque point de calcul (Figure D.36) :
 - Cote de calcul (m)
 - Contrainte verticale à mi-épaisseur de la (sous-)couche
 - T1d : valeur du tassement élastique 1D calculé au point considéré
 - T3d : valeur du tassement élastique 3D calculé au point considéré
 - Toedo : valeur du tassement oedométrique calculé au point considéré (seulement dans le cas où le calcul oedométrique a été demandé. Dans le cas contraire, la colonne ne comporte que des valeurs nulles).

Ce mode d'affichage des résultats permet notamment de vérifier facilement la contribution d'une couche au tassement en un point donné.

Nota : comme ci-dessus, les valeurs de tassements positives correspondent effectivement à des tassements (vers le bas). Les valeurs négatives correspondent à des soulèvements.

- ✓ Le plan moyen, s'il a été demandé (Figure D.37). Cette section :
 - Donne l'équation du plan moyen calculé ;
 - Rappelle les coordonnées (X_P, Y_P) de chaque point de calcul ;
 - Rappelle dans la colonne "calculé", pour chaque point de calcul, le tassement calculé selon la méthode de calcul retenue pour le plan moyen (affichage du tassement élastique 3D si c'est le plan moyen Elastique 3D qui a été demandé, par exemple);
 - Donne dans la colonne "ajusté" la valeur du tassement, au même point de calcul, correspondant à la position du plan moyen de tassement.

point	1	X = 2.000	Y = 0.000		
	Cote	sigma-z mi-couche	tassement 1D	tassement 3D	tassement oedo
	0.000 -1.000 -2.000 -3.000 -4.000 -5.000 -6.000 -7.000 -9.000 -10.000	0.600E-01 0.128E+01 0.394E+01 0.669E+01 0.860E+01 0.958E+01 0.958E+01 0.965E+01 0.965E+01 0.861E+01 0.861E+01	0.270E-05 0.574E-04 0.177E-03 0.251E-03 0.322E-03 0.359E-03 0.369E-03 0.296E-03 0.296E-03 0.277E-03 0.277E-03 0.000E+00 0.242E-02	-0.948E-04 -0.160E-03 -0.275E-04 0.151E-03 0.300E-03 0.397E-03 0.448E-03 0.399E-03 0.399E-03 0.395E-03 0.380E-03 0.380E-03 0.000E+00 0.219E-02	0.248E-03 0.172E-02 0.315E-02 0.114E-01 0.121E-01 0.121E-01 0.114E-01 0.337E-02 0.250E-02 0.250E-02 0.000E+00 0.610E-01
	date	tassement			
	1.0 2.0 5.0	0.05181 0.05752 0.06444			
point	2	X = 1.532	Y = 1.286		
	Cote	sigma-z mi-couche	tassement 1D	tassement 3D	tassement oedo
	0.000 -1.000 -2.000 -3.000 -4.000 -6.000 -7.000 -8.000 -9.000 -10.000	0.600E-01 0.128E+01 0.669E+01 0.669E+01 0.958E+01 0.958E+01 0.958E+01 0.965E+01 0.965E+01 0.861E+01 0.861E+01	0.270E-05 0.574E-04 0.177E-03 0.321E-03 0.359E-03 0.369E-03 0.310E-03 0.296E-03 0.296E-03 0.277E-03 0.000E+00 0.242E-02	-0.948E-04 -0.160E-03 -0.275E-04 0.151E-03 0.300E-03 0.397E-03 0.399E-03 0.399E-03 0.380E-03 0.380E-03 0.000E+00 0.219E-02	0.248E-03 0.172E-02 0.315E-02 0.114E-01 0.121E-01 0.121E-01 0.114E-01 0.337E-02 0.292E-02 0.250E-02 0.000E+00 0.610E-01
	date	tassement			
	1.0 2.0 5.0	0.05181 0.05752 0.06444			

Figure D.36 : Résultats numériques : Résultats formatés – Résultats (impression détaillée)

T1d =-0.137E-08* Xp + 0.826E-13* Yp + 0.379E-02						
azimuth pente m	azimuth /axe X (°): 0.00 pente maxi : -0.137E-08					
Point	хр	Үр	calculé	ajusté		
1	2.000	0.000	0.0024	0.0038		
2	1.532	1.286	0.0024	0.0038		
3	0.347	1,970	0.0024	0.0038		
4	-1,000	1,732	0.0024	0.0038		
5	-1.879	0.684	0.0024	0.0038		
6	-1.879	-0.684	0.0024	0.0038		
7	-1 000	-1 722	0.0024	0.0028		
6	-1.000	-1.070	0.0024	0.0038		
ŝ	1 5 2 2	-1.370	0.0024	0.0038		
10	1.552	-1.200	0.0024	0.0058		
10	4.000	0.000	0.0037	0.0038		
11	3.064	2.5/1	0.0037	0.0038		
12	0.695	3.939	0.0037	0.0038		
13	-2.000	3.464	0.0037	0.0038		
14	-3.759	1.368	0.0037	0.0038		
15	-3.759	-1.368	0.0037	0.0038		
16	-2.000	-3.464	0.0037	0.0038		
17	0.695	-3.939	0.0037	0.0038		
18	3.064	-2.571	0.0037	0.0038		
19	6.000	0.000	0.0095	0.0038		
20	4.596	3.857	0.0095	0.0038		
21	1.042	5.909	0.0095	0.0038		
22	-3.000	5.196	0.0095	0.0038		
23	-5.638	2.052	0.0095	0.0038		
24	-5.638	-2.052	0.0095	0.0038		
25	-3.000	-5.196	0.0095	0.0038		
26	1.042	-5.909	0.0095	0.0038		
27	4.596	-3.857	0.0095	0.0038		
28	8.000	0.000	0.0025	0.0038		
29	6.128	5.142	0.0025	0.0038		
30	1.389	7.878	0.0025	0.0038		
31	-4.000	6.928	0.0025	0.0038		
32	-7.518	2.736	0.0025	0.0038		
33	-7.518	-2.736	0.0025	0.0038		
34	-4.000	-6.928	0.0025	0.0038		
35	1.389	-7.878	0.0025	0.0038		
36	6,128	-5.142	0.0025	0.0038		
37	10,000	0.000	0.0010	0.0038		
38	7,660	6,428	0.0010	0.0038		
39	1.736	9,848	0.0010	0.0038		
40	-5,000	8 660	0.0010	0.0038		
41	-9.397	3 420	0.0010	0.0038		
42	-9 397	-3 420	0.0010	0.0038		
42	-5.000	-8.660	0.0010	0.0038		
45	1 726	-9.949	0.0010	0.0038		
45	7.000	5.040	0.0010	0.0038		
45	7.660	-6.428	0.0010	0.0038		
46	0.000	0.000	0.0021	0.0038		

Figure D.37 : Résultats numériques : Résultats formatés – Résultats (plan ajusté)

D.3.6.2.2. Résultats numériques - Contraintes et Tassements

Ce tableau contient les contraintes et tassements au droit des points de calcul, en fonction de la cote Z (m) :

Désignation	Unité	Condition d'affichage
N° point de calcul (coordonnées du point)	-	Toujours
Z : cote	m	Toujours
$\Delta \sigma_V$: Supplément de contrainte verticale	kPa	Toujours
Tassement 1D : tassement élastique unidimensionnel	m	Toujours
Tassement 3D : tassement élastique tridimensionnel	m	Toujours
Tassement oedo(métrique)	m	Seulement si le calcul oedométrique à été demandé

Tableau D.13 : Détail des résultats numériques (contraintes et tassements)

N° point de calcul	7	Δσ	Tassement 1D	Tassement 3D	Tassement Oedo
1 (0.00-0.00-0.00)	- 0.00	49.99	1 70E-02	1 84E-02	6 62E-01
1 (0,00:0,00:0,00)	-1.00	49,95	1,70E 02	1,67E-02	4.42E-01
1 (0,00:0,00:0,00)	-1.00	49,55	1,48E-02	1,67E-02	4,42E-01
1 (0,00,0,00,0,00)	-2,00	49,04	1,400-02	1,076-02	3 265-01
1 (0,00-0,00-0,00)	-2.00	49,29	1,25E-02	1,48E-02	3,26E-01
1 (0,00:0,00:0,00)	-3.00	49.29	1,03E-02	1,765-02	2 48E-01
1 (0,00:0,00:0,00)	-3.00	48.20	1,03E-02	1,26E-02	2,48E-01
1 (0,00:0,00:0,00)	-4.00	48,20	8 50E-03	1,202 02 1,07E=02	1.825-01
1 (0,00:0,00:0,00)	-4.00	46.55	8 50E-03	1,07E-02	1,82E-01
1 (0,00-0,00-0,00)	-5.00	46.55	6 75E-03	8 70E-02	1,022 01
1 (0,00-0,00-0,00)	-5.00	44 41	6 75E-03	8 70E-03	1,27E-01
1 (0,00-0,00-0,00)	-6.00	44.41	5.08E-03	6,702 03	7.845-02
1 (0 00:0 00:0 00)	-6.00	41.92	5,08E-03	6,68E-03	7,84E-02
1 (0,00:0,00:0,00)	-7.00	41,52	3,51E-03	4 70E-03	3 56E-02
1 (0,00:0,00:0,00)	-7.00	39.21	3,51E-03	4,70E-03	3,56E-02
1 (0,00-0,00-0,00)	-8.00	39.21	2 25E-03	3,05E-03	1 96E-02
1 (0,00-0,00-0,00)	-8.00	36.43	2,25E-03	3,05E-03	1,96E-02
1 (0,00:0,00:0,00)	-9.00	36.43	1.08E-03	1 48E-03	9.04E-03
1 (0,00:0,00:0,00)	-9.00	33,68	1,08E-03	1,48E-03	9.04E-03
1 (0,00:0,00:0,00)	-10.00	33.68	-1 52E-18	1,05E-05	3,99E-17
2 (0 00:1 67:0 00)	0.00	49.99	1,69E-02	1,83E-02	6 60E-01
2 (0 00.1 67.0 00)	-1.00	49.99	1 47F-02	1,65E-02	4 40F-01
2 (0 00.1 67.0 00)	-1.00	49.82	1 47E-02	1.66F-02	4 40F-01
2 (0,00:1,67:0,00)	-2.00	49.82	1,47E-02	1,002 02	3 24E-01
2 (0,00:1,67:0,00)	-2.00	49.22	1 24E-02	1,77E-02	3 24E-01
2 (0,00:1,67:0,00)	-3.00	49.22	1.02E-02	1,772 02	2 46E-01
2 (0,00:1,67:0,00)	-3.00	48.04	1.02E-02	1,25E-02	2,46E-01
2 (0 00-1 67-0 00)	-4 00	48.04	8 41 F-03	1.06F-02	1 80F-01
2 (0,00:1,67:0,00)	-4.00	46,29	8,41E-03	1,00E-02	1,80E-01
2 (0,00:1,67:0,00)	-5.00	46.29	6,68E-03	8,61E-03	1,26E-01
2 (0.00:1.67:0.00)	-5.00	44.06	6.68E-03	8.61E-03	1.26E-01
2 (0 00:1 67:0 00)	-6.00	44.06	5.02E-03	6.60E-03	7 71E-02
2 (0 00:1 67:0 00)	-6.00	41 49	5,02E-03	6,60E-03	7 71E-02
2 (0 00-1 67-0 00)	-7.00	41 49	3 47F-03	4 64F-03	3 48F-02
2 (0 00:1 67:0 00)	-7.00	38 74	3 47E-03	4 64F-03	3 48F-02
2 (0.00:1.67:0.00)	-8.00	38.74	2,22E-03	3.01E-03	1.94E-02
2 (0,00;1,67;0,00)	-8.00	35.95	2,22E-03	3.01E-03	1.94E-02
2 (0,00:1,67:0,00)	-9.00	35.95	1 07E-03	1 46E-03	8.93E-03
2 (0.00:1.67:0.00)	-9,00	33 21	1.07E-03	1.46E-03	8,93F-03
2 (0.00:1.67:0.00)	-10.00	33 21	1.30E-18	1.52E-18	1.74F-18
3 (0.00:3.33:0.00)	0,00	49 99	1.66E-02	1.80F-02	6,52F-01
3 (0.00:3.33:0.00)	-1.00	49.99	1.44E-02	1.64E-02	4,33E-01
3 (0.00:3.33:0.00)	-1.00	49.75	1.44E-02	1.64E-02	4,33E-01
3 (0.00:3,33:0,00)	-2,00	49.75	1,21E-02	1,44E-02	3,18E-01
	_,•••		-,	-,	-,

Figure D.38 : Résultats numériques : Contraintes et tassements

D.3.6.2.3. Résultats numériques - Tassement de consolidation (oedométriques)

Le tableau ne contient des résultats que si un calcul avec oedométrique avec consolidation a été effectué.

		Exporter 💘 Retour
N* point de calcul	Dates t	Tassement Oedo
1 (2.00:0.00:0.00)		0.00E00 ^
1 (2,00;0,00;0,00)		1 5,18E-02
1 (2,00:0,00:0,00)		2 5,94E-02
1 (2.00:0.00:0.00)		5 6.44E-02
2 (1,53;1,29;0,00)		0,00E00
2 (1,53;1,29;0,00)		1 5,18E-02
2 (1,53;1,29;0,00)		2 5,94E-02
2 (1,53;1,29;0,00)		5 6,44E-02
3 (0,35;1,97;0,00)		D 0,00E00
3 (0,35;1,97;0,00)		1 5,18E-02
3 (0,35;1,97;0,00)		2 5,94E-02
3 (0,35;1,97;0,00)		5 6,44E-02
4 (-1,00;1,73;0,00)		0,00E00
4 (-1,00;1,73;0,00)		1 5,18E-02
4 (-1,00;1,73;0,00)		2 5,94E-02
4 (-1,00;1,73;0,00)		5 6,44E-02
5 (-1,88;0,68;0,00)		D 0,00E00
5 (-1,88;0,68;0,00)		1 5,18E-02
5 (-1,88;0,68;0,00)		2 5,94E-02
5 (-1,88;0,68;0,00)		5 6,44E-02
6 (-1,88;-0,68;0,00)		0,00E00
6 (-1,88;-0,68;0,00)		1 5,18E-02
6 (-1,88;-0,68;0,00)		2 5,94E-02
6 (-1,88;-0,68;0,00)		5 6,44E-02
7 (-1,00;-1,73;0,00)		0,00E00
7 (-1,00;-1,73;0,00)		1 5,18E-02
7 (-1,00;-1,73;0,00)		2 5,94E-02
7 (-1,00;-1,73;0,00)		5 6,44E-02
8 (0,35;-1,97;0,00)		0,00E00
8 (0,35;-1,97;0,00)		1 5,18E-02
8 (0,35;-1,97;0,00)		2 5,94E-02
8 (0,35;-1,97;0,00)		6,44E-02
9 (1,53;-1,29;0,00)		0,00200
9 (1,53;-1,29;0,00)		5,185-02
9 (1,53;-1,29;0,00)		2 5,941-02
9 (1,33;-1,29;0,00)		0,442-02
10 (4,00,0,00,00)		7.245.02
10 (4,00;0,00;0,00)		7,342-02
10 (4,00;0,00;0,00)		9,002-02
11 (2,06/2,57/0,00)		1,142-01
11 (3,00/2,37(0,00)		7 245 02
11 (3,06/2,37(0,00)		2 0,545-02
11 (3,06/2,57/0,00)		5 1145.01
11 (5,00;2,57;0,00)		J 1,14E-01

Figure D.39 : Résultats numériques : Tassements de consolidation (oedométriques)

Désignation	Unité	Condition d'affichage
N° point de calcul (coordonnées du point)	-	Toujours
Date t _i : dates de consolidation (telles que saisies dans les données)	-	Toujours
Tassement oedo : tassement oedométrique à la date considérée (fonction du taux de consolidation des différentes couches)	m	Toujours

Tableau D.14 : Détail des résultats numériques : Tassements de consolidation (oedométriques)

D.3.6.2.4. Résultats graphiques - Contraintes et Tassements

Les courbes présentent les mêmes résultats que ceux décrits dans le tableau correspondant (résultats numériques, chapitre D.3.6.2.2).

Là aussi, il est possible de sélectionner/désélectionner plusieurs points de calcul dans la liste à gauche : les courbes correspondant aux points sélectionnés sont alors superposées sur le graphique. Il faut utiliser la touche "Shift" du clavier pour pouvoir sélectionner plusieurs points.

Figure D.40 : Résultats graphiques : Contraintes et tassements

terrasol

D.3.6.2.5. Résultats graphiques - Tassements de consolidation (oedométriques)

Les courbes présentent les mêmes résultats que ceux décrits dans le tableau correspondant (résultats numériques, chapitre D.3.6.2.3).

Là aussi, il est possible de sélectionner/désélectionner plusieurs points de calcul dans la liste à gauche : les courbes correspondant aux points sélectionnés sont alors superposées sur le graphique.

Figure D.41 : Résultats graphiques : Tassement de consolidation oedométrique

D.3.6.2.6. Résultats graphiques -Tassements en nuages de points

Figure D.42 : Résultats graphiques : Tassements à Z donnée

Cette fenêtre permet de visualiser l'intensité des tassements pour une cote Z donnée.

Dans le bandeau en haut de la fenêtre, il est possible de sélectionner :

- La cote choisie
- Le type de tassement à afficher : Elastique 1D, Elastique 3D ou Oedométrique (si disponible).

Dans l'exemple présenté ci-dessus, les bulles en couleurs illustrent la répartition des valeurs de tassement élastique 1D dans le plan (OXY) à la cote Z = 0,00.

D.4. EXEMPLES DE CALCUL

D.4.1. Exemple 1

D.4.1.1. Introduction

Le premier exemple s'organise en deux parties :

- Calcul du tassement unidimensionnel et tridimensionnel de trois couches de sol sous l'action d'une charge rectangulaire
- Puis calcul du tassement oedométrique dans les mêmes conditions.

D.4.1.2. Saisie des données

A l'ouverture de l'application, Foxta propose :

- de créer un nouveau projet ;
- d'ouvrir un projet existant ;
- d'ouvrir automatiquement le dernier projet utilisé.

Dans le cas de cet exemple :

- choisir de créer un nouveau projet en sélectionnant le radio-bouton ONOUVEau projet ;
- Cliquer sur le bouton
 OK

D.4.1.2.1. Assistant Nouveau projet : Nouveau projet

Cadre "Fichier"

- Renseigner le chemin du projet en cliquant sur le bouton
- Donner un nom au fichier et l'enregistrer.

Cadre "Projet"

- Donner un titre au projet ;
- Saisir un numéro d'affaire ;
- Compléter avec un commentaire si besoin ;
- Laisser la case "Utiliser la base de données" décochée (nous n'utiliserons pas la base de données pour cet exemple), et cliquer sur le bouton Suivant

Assistant nouveau projet		x
	Nouveau pro	ojet
Fichier		
Chemin du fichier (*) : C:\Pr	ogram Files\Terrasol\FoXta v3\TASSEL 01.fxp	
Projet-		
Titre du projet (*) :	Exemple 1	
Numéro d'affaire (*) :	TASSEL 01	
Commentaires :	Tassement 1D, 3D et Oedométrique	
	Charge rectangulaire	
(*) Ces champs son	t obligatoires 🔲 Utiliser la base de données Précédent Suivant	

D.4.1.2.2. Assistant Nouveau projet : Choix des modules

Dans la fenêtre "Choix des modules", sélectionner le module Tasseldo puis cliquer sur le bouton

Assistant nouveau projet			X
		Cl	noix des modules
Modules			
	1	**	
TASPIE+	PIECOEF+	TASPLAQ	TASNEG
***	I	4	
TASSELDO	FONDSUP	FONDPROF	GROUPIE
1 module(s) séle	ctionné(s) 🗹 Utiliser la bas	e de données Précédent	Créer

La fenêtre Tasseldo apparaît.

Il convient de compléter les différents onglets de données proposés.

D.4.1.2.3. Onglet Paramètres

Cet onglet contient deux cadres :

Cadre "Paramètre généraux" :

- Titre du calcul Tasseldo : pour cet exemple, on notera par exemple "Exemple 1" ;
- Type d'impression (normal ou détaillé) : on se contentera pour cet exemple d'une impression normale.

Cadre "Importation" :

Il est possible d'importer un projet depuis le module Tasplaq, mais nous n'utiliserons pas cette option pour cet exemple.

Pour passer à l'onglet suivant, cliquer soit sur le nom de l'onglet "Couches", soit sur le bouton 🕨.

D.4.1.2.4. Onglet "Couches"

terrasol

setec

Cet onglet concerne la définition des couches de sols.

-		S Paramètres Couches Charges Consolidation Calcul
	Cote de référence : 7.5 m	Type de calcul Type de calcul © Elastique 30, et 10 © Elastique 30, 10 et oedométrique Définition des couches de sol
n □Z(m) ↓	1.5 m	Non Zouleur Zouleur East v n 1 Coudeur 1,50 8,00E03 0,33 10 2 Coude 2 -5,00 4,00E03 0,33 10 3 Coude 3 -15,00 2,00E04 0,33 10
	-5.0 m	•
	-15.0 m	No de couches : 3 No de decoupages :30 - Paramètres du calcul oedométrique Contrainte verticale effective appliquée au tot de la première couche a _v (p(Pa)) 0,00 ©
Symb. Désignation	visible	Cote de la nappe Z _w (m) 0,00 C Poids volumique de l'eau y _w (M/m ³) 10,00 C
Sol	Ø	Lancement du calcul (Viancer le calcul) (Vior les résultats)

Cadre "Type de Calcul" :

Conserver ici le choix par défaut "Elastique 3D et 1D".

Cadre "Définition des couches de sol" :

Conserver le toit de la première couche à la cote 7,50 m.

Créer ensuite trois couches de sol en cliquant sur le bouton 🔮 pour ajouter chacune des couches.

Les données à saisir sont les suivantes :

Nom	Z _{base} (m)	E _{sol} (kPa)	ν	n
Couche 1	1.5	8000	0.33	10
Couche 2	-5.0	4000	0.33	10
Couche 3	-15	20000	0.33	10

Nota : la discrétisation choisie permet ici de créer des "sous-couches" de 50 cm à un mètre d'épaisseur.

Le dessin dans la partie gauche de l'écran fait apparaître les couches définies.

Tasseldo permet d'enregistrer ces couches de sol dans la base de données du projet et/ou dans la base de données globale des sols en cliquant sur le bouton Bases de données.

Ceci permet d'enregistrer les couches de sol avec leurs paramètres afin d'éviter de les ressaisir lors de l'utilisation d'un autre module pour le même projet Foxta, ou de la création d'un autre projet Foxta.

La base de données ne sera pas utilisée dans le cadre de cet exemple, mais son utilisation est décrite en détail dans la partie C du manuel.

Cadre "Paramètres du calcul oedométrique" :

Il n'est pas accessible ici car nous nous limitons dans cette première partie aux calculs élastiques (cf le choix du type de calcul ci-dessus).

D.4.1.2.5. Onglet "Charges"

Cadre "Charges sur le sol" :

Cet onglet "Charges" permet de définir les charges appliquées sur le sol. Nous utilisons ici un seul rectangle simple avec les caractéristiques suivantes :

X _r (m)	Y _r (m)	Z _r (m)	L _x (m)	L _y (m)	θ _r (°)	q _r (kPa)
0,00	0,00	7,50	10	20	0	50

Cliquer sur le bouton 🗣 pour ajouter une ligne et saisir les valeurs ci-dessus.

<u>Nota</u> : dans les exemples traités dans le manuel, les charges sont toujours appliquées en surface, au niveau du TN. Mais il est à noter qu'il est également possible de définir des charges en profondeur.

Une figure d'aide est accessible en cliquant le bouton with pour illustrer la signification des paramètres L_x , L_y et θ_r :

L'"Assistant des charges" K n'est pas utilisé dans cet exemple car le chargement n'est constitué que d'un rectangle simple. Cette fonctionnalité sera utilisée dans l'exemple 2.

Le dessin dans la partie gauche de l'écran fait maintenant apparaître la charge définie.

D.4.1.2.6. Onglet "Consolidation"

Cet onglet n'est pas accessible ici : il n'est disponible que dans le cas d'un calcul oedométrique.

D.4.1.2.7. Onglet "Calcul"

Cet onglet permet de définir des points pour le calcul du tassement.

Le choix de ces points doit se faire en fonction des besoins de l'étude : ces points sont ceux pour lesquels des résultats détaillés seront fournis dans les résultats. Ce sont également les points qui sont utilisés pour le calcul du plan moyen de tassement lorsque celui-ci est demandé (ce n'est pas le cas pour cet exemple).

Nous avons choisi ici des points en surface et à 2 m de profondeur, aussi bien sous la charge appliquée (sous un quart de la fondation, représentatif de l'ensemble du fait de la symétrie du projet) qu'à l'extérieur (1 point défini hors emprise de la charge).

Cadre "Définition des points de calcul" :

Cliquer sur le bouton pour ajouter une ligne et répéter cette opération pour tous les points à définir.

Nota : nous définissons ici les points de calcul manuellement. L'utilisation de l'assistant "Points de calcul" sera illustrée dans l'exemple 2.

Après avoir défini ces points, ils apparaissent sur la partie gauche de la fenêtre, sous la forme de points bleus (le point correspondant à la ligne sélectionné dans le tableau apparaît sous la forme d'une croix verte).

N°	X _p (m)	Y _p (m)	Z _p (m)
1	0,00	0,00	7,50
2	5,00	10,00	7,50
3	5,00	0,00	7,50
4	0,00	10,00	7,50
5	-5,00	10,00	7,50
6	-5,00	-10,00	7,50
7	5,00	-10,00	7,50
8	-5,00	0,00	7,50
9	0,00	-10,00	7,50
10	0,00	0,00	1,50
11	5,00	0,00	1,50
12	0,00	10,00	1,50
13	5,00	10,00	1,50

terrasol

Cadre "Ajustement en plan moyen" :

Nous n'utiliserons pas de plan moyen pour cet exemple

La saisie des données pour cet exemple est maintenant terminée.

D.4.1.3. Calcul et résultats

D.4.1.3.1. Calcul

Tant que les onglets ne sont pas tous correctement renseignés, le bouton permettant de lancer le calcul s'affiche marqué d'une croix rouge : Stancer le calcul.

Une fois que toutes les données sont correctement saisies, le bouton (Lancer le calcul) (accessible depuis tous les onglets) est alors actif.

Un clic sur ce bouton lancera le calcul.

Pour accéder aux résultats sous forme de tableaux et de graphiques, cliquer sur le bouton voir les résultats.

Cadre "Résultats numériques" :

- Les "Résultats formatés" et les "Contraintes et tassements" sont accessibles en cliquant sur le bouton associé.
- Les résultats "Tassements de consolidations (oedométriques)" ne sont pas accessibles puisque l'option "Elastique 3D, 1D (oedométrique)" n'a pas été retenue pour cet exemple.

Cadre "Résultats graphiques" :

- Les résultats "Contraintes et tassements" et "Tassements en nuages de points" sont accessibles en cliquant sur le bouton associé.
- Les résultats "Tassements de consolidation (oedométriques)" ne sont pas accessibles puisque l'option "Elastique 3D, 1D (oedométrique)" n'a pas été retenue pour cet exemple.

D.4.1.3.2. Résultats

Les principaux résultats disponibles (et notamment les tassements pour les 9 points de calcul) sont présentés sur la page suivante.

Les résultats fournis en termes de tassements sont les tassements élastiques 1D et 3D. Les résultats oedométriques ne sont pas disponibles car le calcul oedométrique n'a pas été demandé pour cet exemple.

Sélectionner un type de résultats pour l'afficher, puis cliquer sur le bouton revenir à l'écran de sélection des différents types de résultats.

On note que pour chaque cote (7,5 ou 1,5), le tassement maximal est obtenu comme prévu au centre de la zone chargée (points 2 et 13). Le tassement maximal obtenu en surface est ainsi obtenu au point 2, avec une valeur de 7,07 cm pour le tassement élastique 3D en ce point. Le tassement du point 13 (également au centre de la zone chargée, mais à la cote 1,5 m) est de 4,64 cm.

Le calcul oedométrique n'ayant pas été sélectionné, la colonne Toedo est affichée, mais ne contient que des valeurs nulles.

Pour quitter l'affichage des résultats, cliquer sur le bouton (a Retour aux données).

cote de ráno contrainte verticale : 0.000 n Cote S0' Sp' 1 7.200 0.600 0.600 2 6.600 1.800 1.00 3 6.000 3.000 4.000 4 5.400 4.200 4.200 5 4.800 5.400 4.200 6 4.200 6.600 7.800 7 3.600 7.800 7.800 8 3.000 9.000 9.000 9 2.400 10.200 10.200 10 1.800 11.400 11.400 11 1.75 12.650 12.650 12 0.525 13.950 13.950 13 -0.125 15.250 16.550 14 -0.775 19.150 17.850 18 -3.375 21.750 21.950 19 -4.025 23.050 24.050 22 -6.500
n Cote S0' Sp' 1 7.200 0.600 0.600 2 6.600 1.800 1.800 3 6.000 3.000 4.000 4 5.400 4.200 4.200 5 4.800 5.400 5.400 6 4.200 6.600 7 7 3.600 7.800 7.800 8 3.000 9.000 9.000 9 2.400 10.200 10.200 10 1.800 11.400 11.400 11 1.175 12.650 12.650 12 0.525 13.950 13.950 13 -0.125 15.250 14.4 -0.775 19.150 17.850 16 -2.075 19.150 17 -2.725 23.050 23 -7.500 26.000 24 -8.500 22.000 25 -9.500 34.000
1 7.200 0.600 0.600 2 6.600 1.800 1.800 3 6.000 3.000 3.000 4 5.400 4.200 4.200 6 4.200 6.600 6.600 7 3.600 7.800 7.800 8 3.000 9.000 9.000 9 2.400 10.200 10.200 10 1.800 11.400 11.400 11 1.175 12.650 12.650 12 0.525 13.950 13.950 13 -0.125 15.250 17.850 16 -2.075 19.150 19.150 17 -2.725 20.450 23.050 21 -5.500 26.000 26.000 22 -6.500 28.000 23.750 23 -7.500 30.000 34.000 34.000 24 -8.500 32.000 38.000 38.000 23 -7.500 36.000 36.000 38.000 24 -8.500<
2 6.600 1.800 1.800 3 6.000 3.000 3.000 4 5.400 4.200 4.200 5 4.800 5.400 5.400 6 4.200 6.600 6.600 7 3.600 7.800 7.800 9 2.400 10.200 10.200 10 1.800 11.400 11.400 11 1.175 12.650 12.650 12 0.525 13.950 13.950 13 -0.125 15.250 15.250 14 -0.775 16.550 16.550 15 -1.425 17.850 17.850 16 -2.075 19.150 17.850 16 -2.075 19.150 20.450 18 -3.375 21.750 21.750 20 -4.675 24.350 24.350 21 -5.500 26.000 26.000 22 -6.500 28.000 28.000 23 -7.500 30.000 30.000 24 -8.500 32.000 32.000 25 -9.500 34.000 34.000 26 -10.500 36.000 34.000 28 -12.500 40.000 40.000 29 -13.500 42.000 42.000
3 6.000 3.000 4.200 4 5.400 5.400 5.400 5 4.800 5.400 6.600 6 4.200 6.600 6.600 7 3.600 7.800 7.800 8 3.000 9.000 9.000 9 2.400 10.200 10.200 10 1.800 11.400 11.400 11 1.175 12.650 12.650 12 0.525 13.950 13.950 13 -0.125 15.250 15.250 14 -0.775 19.150 17.850 16 -2.075 19.150 19.150 17 -2.725 20.450 18 -3.375 21.750 21.750 19 -4.025 23.050 24.350 21 -5.500 26.000 28.000 22 -6.500 26.000 28.000 23 -7.500 30.000 34.000 24 -8.500 32.000 34.000 25
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
7 5.800 7.800 7.800 8 3.000 9.000 9.000 9 2.400 10.200 10.200 10 1.800 11.400 11.400 11 1.175 12.650 12.650 12 0.525 13.950 13.950 13 -0.125 15.250 15.250 14 -0.775 16.550 16.550 15 -1.425 17.850 19.150 17 -2.075 19.150 19.150 17 -2.7725 20.450 20.450 18 -3.375 21.750 23.050 20 -4.675 24.350 24.350 21 -5.500 26.000 28.000 22 -6.500 28.000 28.000 23 -7.500 30.000 30.000 24 -8.500 32.000 34.000 25 -9.500 34.000 36.000 26 -10.500 36.000 36.000 28 -12.500 40.000 40.000
3 3.000 3.000 3.000 9 2.400 10.200 10.200 10 1.800 11.400 11.400 11 1.175 12.650 12.650 12 0.525 13.950 13.950 13 -0.125 15.250 15.250 14 -0.775 16.550 15.550 15 -1.425 17.850 17.850 16 -2.075 19.150 19.150 17 -2.725 20.450 23.050 20 -4.675 24.350 24.350 21 -5.500 26.000 26.000 22 -6.500 28.000 28.000 23 -7.500 30.000 32.000 24 -8.500 32.000 34.000 25 -9.500 34.000 34.000 26 -10.500 36.000 36.000 28 -12.500 40.000 40.000 29 -13.500 42.000 42.000
10 11.400 11.400 11 1.175 12.650 12.650 12 0.525 13.950 13.950 13 -0.125 15.250 15.250 14 -0.775 16.550 15.51 15 -1.425 17.850 17.850 16 -2.075 19.150 19.150 17 -2.725 20.450 23.050 18 -3.375 21.750 21.750 19 -4.025 23.050 24.350 21 -5.500 26.000 26.000 22 -6.500 26.000 28.000 23 -7.500 30.000 34.000 24 -8.500 32.000 34.000 25 -9.500 38.000 34.000 26 -10.500 38.000 38.000 28 -12.500 40.000 40.000 28 -12.500 40.000 40.000
11 1.175 12.650 12.650 12 0.525 13.950 13.950 13 -0.125 15.250 15.250 14 -0.775 16.550 16.550 15 -1.425 17.850 17.850 16 -2.075 19.150 19.150 17 -2.725 20.450 20.450 18 -3.375 21.750 23.050 20 -4.675 24.350 23.050 21 -5.500 26.000 26.000 22 -6.500 28.000 28.000 23 -7.500 30.000 34.000 24 -8.500 34.000 34.000 25 -9.500 34.000 36.000 26 -10.500 36.000 38.000 28 -12.500 40.000 40.000 28 -12.500 44.000 44.000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
13 -0.125 15.250 14 -0.775 15.550 15 -1.425 17.850 17.850 16 -2.075 19.150 19.150 17 -2.725 20.450 20.450 18 -3.375 21.750 21.750 19 -4.025 23.050 23.050 20 -4.675 24.350 24.350 21 -5.500 26.000 28.000 22 -6.500 28.000 23.050 23 -7.500 30.000 30.000 24 -8.500 32.000 34.000 25 -9.500 34.000 34.000 26 -10.500 38.000 38.000 28 -12.500 40.000 40.000 29 -13.500 42.000 42.000
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
19 -4.025 23.050 20 -4.025 23.050 21 -5.500 26.000 22 -6.500 28.000 23 -7.500 30.000 24 -8.500 32.000 25 -9.500 34.000 26 -10.500 36.000 27 -11.500 38.000 28 -12.500 40.000 29 -13.500 42.000 20 -4.600 44.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
21 -5.500 26.000 26.000 22 -6.500 28.000 28.000 23 -7.500 30.000 30.000 24 -8.500 32.000 32.000 25 -9.500 34.000 34.000 26 -10.500 36.000 38.000 27 -11.500 38.000 38.000 28 -12.500 40.000 40.000 29 -13.500 42.000 42.000 30 -14.500 44.000 44.000
22 -6.500 28.000 28.000 23 -7.500 30.000 30.000 24 -8.500 32.000 32.000 25 -9.500 34.000 34.000 26 -10.500 36.000 38.000 27 -11.500 38.000 38.000 28 -12.500 40.000 40.000 30 -14.500 44.000 44.000
23 -7.500 30.000 30.000 24 -8.500 32.000 32.000 25 -9.500 34.000 34.000 26 -10.500 36.000 36.000 27 -11.500 38.000 38.000 28 -12.500 40.000 42.000 30 -14.500 44.000 44.000
24 -8.500 32.000 32.000 25 -9.500 34.000 34.000 26 -10.500 36.000 36.000 27 -11.500 38.000 38.000 28 -12.500 40.000 40.000 29 -13.500 42.000 44.000
25 -9.500 34.000 34.000 26 -10.500 36.000 36.000 27 -11.500 38.000 38.000 28 -12.500 40.000 40.000 29 -13.500 42.000 42.000 30 -14.500 44.000 44.000
26 -10.500 36.000 36.000 27 -11.500 38.000 38.000 28 -12.500 40.000 40.000 29 -13.500 42.000 42.000 30 -14.500 44.000 44.000
28 -12.500 40.000 40.000 29 -13.500 42.000 42.000 30 -14.500 44.000 44.000
29 -13.500 42.000 42.000 30 -14.500 44.000 44.000
30 -14.500 44.000 44.000
Surfaces de charges rectangulaires
1 0.000 0.000 7.500 10.000 20.000 0.000 50.000
Tassements calculés
Point X Y Z T1d T3d Toedo
1 0.000 0.000 7.500 0.0199 0.0228 0.0000
2 5.000 10.000 7.500 0.0562 0.0707 0.0000
3 5.000 0.000 7.500 0.0303 0.0367 0.0000
4 0,000 10,000 7,500 0,0360 0,0435 0,0000
5 -5.000 -10.000 7.500 0.0108 0.0100 0.0000
7 5.000 -10.000 7.500 0.0025 0.0012 0.0000
8 -5,000 0,000 7,500 0,0065 0,0054 0,0000
5 51000 51000 71500 010005 010004 010000
9 0.000 -10.000 7.500 0.0022 0.0008 0.0000
9 0.000 -10.000 7.500 0.0022 0.0008 0.0000 10 0.000 0.000 1.500 0.0136 0.0171 0.0000
9 0.000 -10.000 7.500 0.0022 0.0008 0.0000 10 0.000 0.000 1.500 0.0136 0.0171 0.0000 11 5.000 0.000 1.500 0.0187 0.0249 0.0000
9 0.000 -10.000 7.500 0.0022 0.0008 0.0000 10 0.000 0.000 1.500 0.0136 0.0171 0.0000 11 5.000 0.000 1.500 0.0249 0.0000 12 0.000 15.000 0.0237 0.0317 0.0000 13 5.000 15.000 0.0237 0.0317 0.0000

Résultats numériques - Résultats formatés

N° point de calcul	Z	Δσγ	Tassement 1D	Tassement 3D
1 (0,00;0,00;7,50)	7,50	12,50	1,98E-02	2,28E-02
1 (0,00;0,00;7,50)	6,90	12,50	1,92E-02	2,24E-02
1 (0,00;0,00;7,50)	6,90	12,50	1,92E-02	2,24E-02
1 (0,00;0,00;7,50)	6,30	12,50	1,86E-02	2,19E-02
1 (0,00;0,00;7,50)	6,30	12,48	1,86E-02	2,19E-02
1 (0,00;0,00;7,50)	5,70	12,48	1,80E-02	2,14E-02
1 (0,00;0,00;7,50)	5,70	12,45	1,80E-02	2,14E-02
1 (0,00;0,00;7,50)	5,10	12,45	1,73E-02	2,08E-02
1 (0,00;0,00;7,50)	5,10	12,40	1,73E-02	2,08E-02
1 (0,00;0,00;7,50)	4,50	12,40	1,67E-02	2,02E+02
1 (0,00;0,00;7,50)	4,50	12,32	1,67E-02	2,02E-02
1 (0,00;0,00;7,50)	3,90	12,32	1,61E-02	1,97E-02
1 (0,00;0,00;7,50)	3,90	12,22	1,61E-02	1,97E-02
1 (0,00;0,00;7,50)	3,30	12,22	1,55E-02	1,90E-02
1 (0,00;0,00;7,50)	3,30	12,09	1,55E-02	1,90E-02
1 (0,00;0,00;7,50)	2,70	12,09	1,48E-02	1,84E-02
1 (0,00;0,00;7,50)	2,70	11,93	1,48E-02	1,84E-02
1 (0,00;0,00;7,50)	2,10	11,93	1,42E-02	1,78E-02
1 (0,00;0,00;7,50)	2,10	11,75	1,42E-02	1,78E-02
1 (0,00;0,00;7,50)	1,50	11,75	1,36E-02	1,71E-02
1 (0,00;0,00;7,50)	1,50	11,54	1,36E-02	1,71E-02
1 (0,00;0,00;7,50)	0,85	11,54	1,24E-02	1,57E-02
1 (0,00;0,00;7,50)	0,85	11,29	1,24E-02	1,57E-02
1 (0,00;0,00;7,50)	0,20	11,29	1,11E-02	1,42E-02
1 (0,00;0,00;7,50)	0,20	11,03	1,11E-02	1,42E-02
1 (0,00;0,00;7,50)	-0,45	11,03	9,93E-03	1,28E-02
1 (0,00;0,00;7,50)	-0,45	10,76	9,93E-03	1,28E-02
1 (0,00;0,00;7,50)	-1,10	10,76	8,75E-03	1,14E-02
1 (0,00;0,00;7,50)	-1,10	10,48	8,75E-03	1,14E-02
1 (0,00;0,00;7,50)	-1,75	10,48	7,60E-03	9,98E-03
1 (0,00;0,00;7,50)	-1,75	10,19	7,60E-03	9,98E-03
1 (0,00;0,00;7,50)	-2,40	10,19	6,48E-03	8,58E-03
1 (0,00;0,00;7,50)	-2,40	9,90	6,48E-03	8,58E-03
1 (0,00;0,00;7,50)	-3,05	9,90	5,40E-03	7,21E-03
1 (0,00;0,00;7,50)	-3,05	9,60	5,40E-03	7,21E-03
1 (0,00;0,00;7,50)	-3,70	9,60	4,35E-03	5,85E-03
1 (0,00;0,00;7,50)	-3,70	9,31	4,35E-03	5,85E-03
1 (0,00;0,00;7,50)	-4,35	9,31	3,32E-03	4,53E-03
1 (0,00;0,00;7,50)	-4,35	9,01	3,32E-03	4,53E-03
1 (0,00;0,00;7,50)	-5,00	9,01	2,34E-03	3,23E-03

Résultats numériques - Contraintes et tassements

Résultats graphiques - Contraintes et tassements

Résultats graphiques – Tassements en nuages de points

D.4.1.3.3. Modification des données

Il est possible, si nécessaire, et en restant dans le même fichier, de modifier les données saisies et de relancer le calcul.

On souhaite ici par exemple compléter le calcul précédent par le calcul du tassement oedométrique : cliquer sur le bouton <u>Retour</u>, puis sur le bouton <u>Retour aux données</u> pour revenir à la saisie des données. Puis sélectionner l'onglet "Couches", cocher l'option "Elastique 3D, 1D et oedométrique", puis compléter :

- les colonnes nouvellement affichées dans le tableau des caractéristiques de sols ;
- le cadre "Paramètres du calcul oedométrique" en bas du même onglet ;
- l'onglet "Consolidation" qui est à présent accessible : nous n'utiliserons toutefois pas cette fonctionnalité pour cet exemple. Elle sera illustrée dans l'exemple 2.

Edition juillet 2012 - Copyright @ Foxta v3 - 2011

Cadre "Définition des couches de sol" :

Nom	C _s /(1+e0)	t _c	C _c /(1+e0)	γ (kN/m³)
Couche 1	0,012	-50 (kPa)	0,080	20,00
Couche 2	0,025	1,00	0,200	19,00
Couche3	0,005	1,30	0,030	20,00

Les valeurs à compléter en vue du calcul oedométrique sont les suivantes :

Nota sur les valeurs de tc :

- lorsqu'elles sont positives : elles correspondent par convention à des ratios de surconsolidation (OCR). Voir le chapitre D.3.2.2.
- lorsqu'elles sont négatives, elles correspondent par convention à des pressions de surconsolidation (en kPa). Voir le chapitre D.3.2.2.

Cadre "Paramètres du calcul oedométrique" :

Les valeurs complémentaires à saisir sont les suivantes :

σ _{vo} ' (kPa)	Z _w (m)	γ _w (kN/m³)
0,00	6,50	10,00

Onglet "Consolidation" :

Ne pas cocher la case "Prise en compte de la consolidation" (cette fonctionnalité sera illustrée dans l'exemple 2).

Enregistrer le projet sous un autre nom (TASSEL01bis par exemple) et lancer à nouveau le calcul. Pour exploiter les résultats, utiliser la même méthode que précédemment.

Les résultats numériques et graphiques des "Tassements de consolidation (oedométriques)" ne sont toujours pas accessibles : en effet, nous avons activé le calcul oedométrique, mais sans utiliser la fonctionnalité "Consolidation" de calcul des tassements dans le temps.

Résultats numériques formatés :

On retrouve logiquement que les tassements T1d et T3d sont identiques au 1^{er} calcul (les données relatives au calcul élastique n'ont pas été modifiées).

On obtient cette fois-ci en complément les valeurs calculées pour le tassement oedométrique (colonne T_{oedo}) : celles-ci sont largement supérieures aux valeurs résultant des 2 calculs élastiques : tassement oedométrique maximal (point 2) de 17,0 cm au lieu de 7,07 cm pour le même point en tassement élastique 3D.

C'est la comparaison entre ces valeurs élastiques et oedométriques qui peut permettre, si nécessaire, d'effectuer un calage entre le module élastique et les caractéristiques oedométriques de chaque couche de sol.

Progr	amme Tasse	1do ∨2.0.4				(c) TERRASOL	2011		
 File	: R:\Logi	ciels\Foxt	a ∨3\Manuel	s et e>	emples\Man	 µels Foxta ∨	3∖D - Tasseldo\e×emp	oles\TASSELDO E	XEMPLE 1A DO
Calcu	l réalisé	1e: 23	/08/2012 à	111156				·	
Titre	du calcul	ar: Te • Exemple	rrasol						
linere	an carcar	. Exempte	-						
Caract	éristiques	des couch	es						
n	Z base 7.500	module	coef. Po	isson	Cs/(1+e0)	Cc/(1+e0)	G		
1 2 3	6.900 6.300 5.700	0.800E+04 0.800E+04 0.800E+04	0.3 0.3 0.3	:30 :30 :30	0.012 0.012 0.012	0.080 0.080 0.080	20.000 20.000 20.000		
4 5	5.100 4.500	0.800E+04 0.800E+04	0.3	30	0.012 0.012	0.080	20.000 20.000		
7	3.300	0.800E+04 0.800E+04	0.3	30	0.012	0.080	20.000		
10 11	2.100 1.500 0.850	0.800E+04 0.800E+04 0.400E+04	0.3	30 30 30	0.012 0.012 0.025	0.080 0.080 0.200	20.000 20.000 19.000		
12 13 14	0.200 -0.450 -1.100	0.400E+04 0.400E+04 0.400E+04	0.3 0.3 0.3	30 30 30	0.025 0.025 0.025	0.200 0.200 0.200	19.000 19.000 19.000		
15 16	-1.750	0.400E+04 0.400E+04	0.3	30	0.025	0.200	19.000 19.000		
18 19	-3.700 -4.350	0.400E+04 0.400E+04 0.400E+04	0.3	30 30	0.025	0.200	19.000 19.000 19.000		
20 21 22	-5.000 -6.000 -7.000	0.400E+04 0.200E+05 0.200E+05	0.3 0.3 0.3	:30 :30 :30	0.025 0.005 0.005	0.200 0.030 0.030	19.000 20.000 20.000		
23 24 25	-8.000 -9.000 -10.000	0.200E+05 0.200E+05	0.3 0.3	30 30 30	0.005	0.030 0.030	20.000 20.000 20.000		
26	-11.000	0.200E+05 0.200E+05	0.3	30	0.005	0.030	20.000		
28 29 30	-13.000 -14.000 -15.000	0.200E+05 0.200E+05 0.200E+05	0.3	30 30 30	0.005 0.005 0.005	0.030 0.030 0.030	20.000 20.000 20.000		
Contra	intes effe	ctives au	centre des	couches					
cot	te de réfé	rence :	7.500		contra	inte vertic	ale: 0.000		
n	Cote	so'	5p'		poras	vorunique e	au . 10.0		
1 2	7.200 6.600	6.000 18.000	56.000 68.000						
3 4 5	6.000 5.400 4.800	25.000 31.000 37.000	75.000 81.000 87.000						
6 7	4.200	43.000 49.000	93.000 99.000						
9 10	2.400	61.000 67.000	111.000 117.000						
11 12 13	1.175 0.525 -0.125	72.925 78.775 84.625	72.925 78.775 84.625						
14 15 16	-0.775 -1.425 -2.075	90.475 96.325 102.175	90.475 96.325 102.175						
17 18	-2.725	108.025	108.025 113.875						
20 21	-4.025 -4.675 -5.500	119.725 125.575 133.500	119.725 125.575 173.550						
22 23 24	-6.500 -7.500 -8.500	143.500 153.500 163.500	186.550 199.550 212.550						
25	-9.500 -10.500	173.500 183.500	225.550 238.550 251.550						
28 29	-12.500 -13.500	203.500	264.550						
30	-14.500	223.500	290.550						
Surface	es de char	ges rectan	gulaires						
n	×o		Y0		Z0 7 500	L×	LY	teta(o)	q 50.000
Tassem	ents calcu	léc	0.000		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10.000	20.000	0.000	50.000
Doint				Tid	Tod	Toodo			
Forne									
2	5.000	10.000	7.500	0.0562	0.0228 0.0707 0.0367	0.1701			
4 5 6	0.000 -5.000 -5.000	10.000 10.000 -10.000	7.500 7.500 7.500	0.0360	0.0435	0.1206 0.0398 0.0045			
7	5.000	-10.000	7.500	0.0025	0.0012	0.0085			
10 11	0.000	0.000	1.500	0.0136	0.0171 0.0249	0.0588			
12 13	0.000 5.000	10.000 10.000	1.500 1.500	0.0237 0.0332	0.0317 0.0464	0.1015 0.1410			

Courbes graphiques : Contraintes et tassements

On retrouve bien que le tassement maximal en surface est obtenu pour le point 2 (17,0 cm en tassement oedométrique et 7,1 cm en tassement élastique 3D.

Pour les points hors de l'emprise de la zone chargée, le terme $\Delta \sigma_v$ est nul en surface, et augmente en profondeur.

Nota :

- Passer la souris sur une courbe pour obtenir les valeurs correspondant aux points de la courbe ;
- Les courbes de tassements pour les points de calcul situés à la cote 1,5 m sont prolongées verticalement entre les cotes 1,5 et 7,5 m (pas de tassement calculé au-dessus du point de calcul).

D.4.2. Exemple 2

D.4.2.1. Présentation du problème

Cet exemple reprend le même profil de sols que le précédent. Mais la charge est ici de forme annulaire et les points de calculs seront choisis de manière à ce qu'ils soient répartis sur un disque de rayon supérieur à celui de la charge.

En outre, cet exemple utilise un calcul de plan moyen du tassement 1D et le tassement oedométrique du sol est observé en fonction du temps.

D.4.2.2. Saisie des données

A l'ouverture de l'application, Foxta propose :

- de créer un nouveau projet ;
- d'ouvrir un projet existant ;
- d'ouvrir automatiquement le dernier projet utilisé.

Dans le cas de cet exemple :

- choisir de créer un nouveau projet en sélectionnant le radio-bouton ONUVEAU projet ;
- cliquer sur le bouton OK

D.4.2.2.1. Assistant Nouveau projet : Nouveau projet

Cadre "Fichier" :

- Renseigner le chemin du projet en cliquant sur le bouton ____;
- Donner un nom au fichier et l'enregistrer.

Cadre "Projet" :

- Donner un titre au projet ;
- Saisir un numéro d'affaire ;
- Compléter avec un commentaire si besoin ;
- Laisser la case "Utiliser la base de données" décochée (nous n'utiliserons pas la base de données pour cet exemple), et cliquer sur le bouton Suivant

Assistant nouveau projet		x
	Nouveau	projet
Fichier Chemin du fichier (*) : to\Doo	uments\Z\MTO\Foxta V3\Projets\Tasseldo\Exemple 02a.fxp	
-Projet		
		_
Titre du projet (*) :	Exemple 2	
Numéro d'affaire (*) :	Affaire N° 2	
Commentaires :	Projet élastique 1d, 3D oedométique Charge annulaire	
(*) Ces champs sont obligatoir	es 🔲 Utiliser la base de données (Précédent)	Suivant

D.4.2.2.2. Assistant Nouveau projet : Choix des modules

Dans la fenêtre "Choix des modules", sélectionner le module Tasseldo puis cliquer sur le bouton Créer.

Assistant nouveau projet	
Modules	Choix des modules
TASPIE+ PIECOEF+	TASPLAQ TASNEG
TASSELDO FONDSUP	FONDPROF GROUPIE
1 module(s) sélectionné(s) 🗹 Utiliser la base	de données Précédent Créer

La fenêtre Tasseldo apparaît.

Il convient de compléter les différents onglets de données proposés.

D.4.2.2.3. Onglet "Paramètres"

Excepté le titre du projet, le premier onglet est rempli de la même manière que pour l'exemple 1.

D.4.2.2.4. Onglet "Couches"

Cadre "Type de calcul" :

On coche cette fois directement l'option "Elastique 3D, 1D et oedométrique".

Cadre "Définition des couches de sol" :

Les données à saisir sont les suivantes (ce sont les mêmes que pour l'exemple 1 : il est possible de retourner dans l'exemple 1, d'exporter les couches de sol dans la base de données générale, puis de les importer au moment de la création de l'exemple 2, pour éviter de saisir à nouveau les mêmes données. Voir la partie C du manuel) :

Toit de la première couche : 7,50 m.

Nom	Z _{base} (m)	E _{sol} (kPa)	ν	C _s /(1+ _e 0)	t _c	C _c /(1+ _e 0)	γ (kN/m³)	n
Couche 1	1,50	8000	0,33	0,012	-50 (kPa)	0,08	20,00	10
Couche 2	-5	4000	0,33	0,025	1,00	0,20	19,00	10
Couche 3	-15	20000	0,33	0,005	1,30	0,03	20,00	10

🍼 Paramètres	🕈 Paramètres 🛇 Couches 💐 Charges 🖏 Consolidation 🔿 Calcul									
Type de calcul Données des couches										
i jpe de cale) ype de caicul () Elastique 3D et 1D () Elastique 3D, 1D et oedométrique									
Définition des couches de sol										
Toit de la première couche (m) 7,50 🗘										
No	Nom	Couleur	Zbase	Esol	v	Cs/(1+e0)	tc	Cc/(1+e0)	γ	n
1	Couche 1		1,50	8,00E03	0,33	0,012	-50,00	0,080	20,00	10
2	Couche 2		-5,00	4,00E03	0,33	0,025	1,00	0,200	19,00	10
3	Couche 3		-15,00	2,00E04	0,33	0,005	1,30	0,030	20,00	10
No de couches : 3 No de découpages : 30										
Paramètres d	u calcul oedométriq	ue								
	Contrainte verticale effective appliquée au toit de la première couche σ_{v0}' (kPa)0,00 \bigcirc Cote de la nappe Z_w (m)6,50 \bigcirc Poids volumique de l'eau v_w (kN/m³)10,00 \bigcirc									
				ncement du calcul S Lancer le calcul V	r les résultats					

Cadre "Paramètres du calcul oedométrique" :

Les données à saisir sont les suivantes :

σ _{vo} ' (kPa)	Z _w (m)	γ _w (kN/m³)
0,00	6,50	10,00

D.4.2.2.5. Onglet "Charges"

Dans l'onglet "Charges", utiliser le bouton "Assistant de charge" 🛃 (en bas à gauche de l'onglet) et sélectionner l'onglet "Chargement annulaire uniforme".

Les données à saisir sont les suivantes :

X _A (m)	Y _A (m)	Z _A (m)	R (m)	e (m)	Subdivisions	q (kPa)
0,00	0,00	7,50	6,00	1,00	50	200,00

Le rayon à saisir est le rayon moyen de l'anneau. Dans le cas de cet exemple, le rayon intérieur de l'anneau est donc de 5,5 m, et le rayon extérieur est égal à 6,5 m.

Une fois ces données saisies, cliquer sur le bouton **Transférer** pour créer les rectangles de charge correspondants dans le tableau des charges : on peut vérifier que l'assistant a bien généré 50 rectangles pour représenter l'anneau.

Le rectangle sélectionné dans la liste est encadré d'un liseré vert sur le dessin.

D.4.2.2.6. Onglet "Consolidation"

Cocher la case "Prise en compte de la consolidation" puis compléter l'onglet :

Cadre "Définition des dates de consolidation" :

Pour ajouter les valeurs de date (c'est-à-dire des colonnes dans le tableau), cliquer sur le bouton

Les valeurs à saisir sont les suivantes :

t1	t ₂	t ₃	t4	
1	5	20	50	

		Par	ramètres de (consolidation
Version in the second s				
Définition des dates de consolidation				
	date t,	date t _a	date t _a	date t,
Valeur de la date	1	2 5	20	4 50
	data			• • • •
Taux de consolidation par couche et par Couche	Xu (t ₁)	Xu (t ₂)	Xu (t.)	Xu (t ₄)
Taux de consolidation par couche et par o Couche Couche 1	Xu (t ₁) 70,0	Xu (t ₂) 99,0	Xu (t ₃) 100,0	Xu (t ₄) 100,0
Taux de consolidation par couche et par o Couche Couche 1 Couche 2	Xu (t ₁) 70,0 20,0	Xu (t ₂) 99,0 50,0	Xu (t ₃) 100,0 90,0	Xu (t ₄) 100,0 100,0
Taux de consolidation par couche et par Couche Couche 1 Couche 2 Couche 3	Xu (t ₁) 70,0 20,0 90,0	Xu (t ₂) 99,0 50,0 99,0	Xu (t ₃) 100,0 90,0 100,0	Xu (t ₄) 100,0 100,0 100,0

Cadre "Taux de consolidation par couche et par date" :

3 lignes correspondant aux 3 couches de sol ont été automatiquement créées.

Il faut y définir, pour les trois couches de sols, leur degré de consolidation respectif, exprimé en pourcentage, en fonction des dates.

Les valeurs à saisir pour cet exemple sont les suivantes :

Couches	X _u (t ₁) (%)	X _u (t ₂) (%)	X _u (t ₃) (%)	X _u (t ₄) (%)
Couche 1	70	99	100	100
Couche 2	20	50	90	100
Couche 3	90	99	100	100

D.4.2.2.7. Onglet "Calcul"

On peut à présent générer les points de calcul, sur la surface d'un disque.

Cadre "Définition des points de calcul" :

Ces points seront ceux utilisés pour le calcul du plan moyen de tassement. Il est donc important de sélectionner des points répartis uniformément et de façon symétrique par rapport à la zone chargée, pour obtenir un plan moyen représentatif (l'utilisation de l'assistant garantit cette répartition homogène des points dans la zone définie).

De même, l'étendue du disque retenu pour définir ces points aura une influence sur le plan moyen calculé : on choisit ici volontairement de définir un disque plus large que la zone chargée.

Cliquer sur le bouton "Assistant de points de calcul" , et sélectionner l'onglet "Répartis sur un disque horizontal".

Les données à saisir sont les suivantes :

X _A (m)	Y _A (m)	Z _A (m)	R (m)	Nr	Ν _θ
0,00	0,00	7,50	10,0	5	9

L'assistant calcule automatiquement le nombre total de points qui seront générés : 45.

Cliquer sur (Transférer) pour créer les 45 points dans les données du projet.

On choisit ici de rajouter un 46^{ème} point manuellement : rajouter le point (0, 0, 7.50) correspondant au centre de la zone chargée.

Cadre "Ajustement en plan moyen" :

Sélectionner dans le menu déroulant l'option "Plan moyen 3D".

D.4.2.3. Calcul et Résultats

D.4.2.3.1. Calcul

Cliquer sur le bouton 🗸 Lancer le calcul) pour lancer le calcul.

Pour accéder aux résultats sous forme de tableaux et de graphiques, cliquer sur le bouton Voir les résultats

D.4.2.3.2. Résultats

De nouveaux types de résultats sont accessibles par rapport à l'exemple 1 :

 Les tassements oedométriques aux différentes dates définies, pour tous les points de calcul (ci-dessous l'affichage sous forme graphique, avec utilisation de la touche "Shift" pour pouvoir sélectionner et donc superposer plusieurs courbes sur le graphique).

Ces résultats sont disponibles car nous avons choisi d'effectuer un calcul oedométrique avec consolidation.

On a sélectionné sur le graphique ci-dessous les points de calcul 46, 1, 10, 19, 28 et 37, alignés le long d'un rayon, le point 19 étant situé sous la fibre moyenne de l'anneau (les points sélectionnés sont illustrés sur la figure suivante).

On constate de façon logique qu'en partant du point 46 (centre de l'anneau) vers l'extérieur, le tassement commence par augmenter au fur et à mesure qu'on se rapproche de l'anneau chargé, jusqu'à atteindre sa valeur maximale sous l'anneau (point 19, avec un tassement oedométrique proche de 13 cm), puis diminue à nouveau au fur et à mesure qu'on s'éloigne de l'anneau chargé.

• L'équation du plan moyen 3D, calculé sur la base du tassement 3D de l'ensemble des points de calcul définis (ci-après l'affichage du plan moyen à la fin des résultats numériques formatés).

On note que le tassement ajusté (plan moyen 3D pour cet exemple) est le même pour tous les points de calcul : ceci correspond au cas d'un chargement uniforme et d'une distribution de points de calcul homogène sous la zone chargée. Le tassement du plan moyen est ici égal à 3,6 cm.

Concernant le tassement élastique, la colonne "calculé" nous indique qu'il est maximum pour les points situés sous l'anneau chargé, comme constaté précédemment, avec une valeur de 6,65 cm (point 19 par exemple). D'autre part, on constate, comme attendu, que le tassement a la même valeur pour tous les points situés sur un même cercle centré sur le centre de l'anneau chargé, s'agissant justement d'une charge annulaire uniforme.

Plan ajusté sur la déformée

		Ĩ	.1452-0/	
Point	Хр	Yp	calculé	ajusté
1	2.000	0.000	0.0326	0.0357
2	1.532	1.286	0.0326	0.0357
3	0.347	1.970	0.0326	0.0357
4	-1.000	1.732	0.0326	0.0357
5	-1.879	0.684	0.0326	0.0357
5	-1.879	-0.684	0.0326	0.0357
, s	0.347	-1.970	0.0326	0.0357
9	1.532	-1.286	0.0326	0.0357
10	4.000	0.000	0.0392	0.0357
11	3.064	2.571	0.0392	0.0357
12	0.695	3.939	0.0392	0.0357
13	-2.000	3.464	0.0392	0.0357
14	-3.759	1.368	0.0392	0.0357
15	-3.759	-1.368	0.0392	0.0357
16	-2.000	-3.464	0.0392	0.0357
1/	0.695	-3.939	0.0392	0.0357
19	6 000	-2.5/1	0.0592	0.0357
20	4.596	3.857	0.0005	0.0357
21	1.042	5,909	0.0665	0.0357
22	-3.000	5.196	0.0665	0.0357
23	-5.638	2.052	0.0665	0.0357
24	-5.638	-2.052	0.0665	0.0357
25	-3.000	-5.196	0.0665	0.0357
26	1.042	-5.909	0.0665	0.0357
27	4.596	-3.85/	0.0665	0.0357
28	8.000	0.000	0.0267	0.0357
30	1 389	7 979	0.0267	0.0357
31	-4.000	6.928	0.0267	0.0357
32	-7.518	2.736	0.0267	0.0357
33	-7.518	-2.736	0.0267	0.0357
34	-4.000	-6.928	0.0267	0.0357
35	1.389	-7.878	0.0267	0.0357
36	6.128	-5.142	0.0267	0.0357
37	10.000	0.000	0.0142	0.0357
38	7.660	6.428	0.0142	0.0357
39	-5 000	9.848	0.0142	0.0357
40	-9 397	3 420	0.0142	0.0357
42	-9.397	-3.420	0.0142	0.0357
43	-5.000	-8.660	0.0142	0.0357
44	1.736	-9.848	0.0142	0.0357
45	7.660	-6.428	0.0142	0.0357
4.5		0.000	0.0207	0.0057